K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(HUY=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}=1\)

2 tháng 1 2017

\(S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{bc}{bc+bc^2+c^2ab}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}\)

\(=\frac{1+b+bc}{1+bc+b}=1\rightarrow S=1\)

13 tháng 2 2019

\(S=1\)

21 tháng 7 2016

Có abc=1 nên 
1/(1+a+ab)=abc/(abc+a+ab) 
=abc/[a(1+b+bc)] 
=bc/(1+b+bc) 

1/(1+c+ac)=abc/(abc+c.abc+ac) 
=abc/[ca(1+b+bc)]=b/(1+b+bc) 

=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac) 
=bc/(1+b+bc)+1/(1+b+bc)+b/(1+b+bc) 
=(1+b+bc)/(1+b+bc) 
=1 
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)=1

ràu xong

22 tháng 7 2016

thanks bạn nhiều 

21 tháng 6 2015

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc.c}+\frac{1}{1+c+ac}\)

thay abc=1 ta được:

\(\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)(cùng mẫu c+ac+1)

=\(\frac{c+ac+1}{c+ac+1}=1\)

vậy S=1