Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2+1^2\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\)
Lại có:
\(a^2+b^2+c^2+d^2\ge ab+bc+cd+da\forall a,b,c,d\)
\(\Rightarrow\dfrac{1}{2}>\dfrac{1}{4}\ge ab+bc+ca+da\) (ĐPCM)
(a,b,c khác 0 nữa)
\(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\)
\(\Leftrightarrow a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{c-b}{bc}\\b-c=\dfrac{a-c}{ca}\\c-a=\dfrac{b-a}{ab}\end{matrix}\right.\)(1)
Xét a=b hoặc b=c hoặc c=a thì=>a=b=c
Xét \(a\ne b\ne c\)
\(\left(1\right)\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(c-b\right)\left(a-c\right)\left(b-a\right)}{a^2b^2c^2}\)
\(\Leftrightarrow-1=\dfrac{1}{a^2b^2c^2}\)(vô nghiệm)
Vậy ...
1) 2( a2 + b2 ) ≥ ( a + b)2
<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( luôn đúng )
=> đpcm
2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :
a + b ≥ \(2\sqrt{ab}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)
=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4
=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ \(\dfrac{4}{x+y}\)
Nội suy Sửa đề làm cho bạn
Bài 1:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế
\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng
\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử
\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)
Thu gọn có thể không cần
\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm
Đẳng thức khi a=b=c
=> dpcm
lần sau viết đề cẩn thận hơn nhé ! Bài 3 SGK trang 79 - Toán lớp 10 | Học trực tuyến
Từ \(a+b+c=1\Rightarrow2a+2a+2c=2\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)
Ta có: \(\dfrac{a+bc}{b+c}=\dfrac{a\left(a+b+c\right)+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\)
Tương tự ta viết lại biểu thức cần chứng minh như sau:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{c+a}+\dfrac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)
Đặt \(\left\{{}\begin{matrix}x=b+c\\y=a+c\\z=a+b\end{matrix}\right.\) vậy BĐT cần chứng minh là:
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge2\forall\)\(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2\end{matrix}\right.\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\\\dfrac{xz}{y}+\dfrac{yz}{x}\ge2y\\\dfrac{yz}{x}+\dfrac{xy}{z}\ge2z\end{matrix}\right.\)
Cộng theo vế rồi thu gọn ta điều phải chứng minh
Note:\(\dfrac{a+ab}{a+b}???\rightarrow\dfrac{c+ab}{a+b}\)
Ta có:
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=1\)
\(\Rightarrow2ab+2ac+2bc=1-a^2-b^2-c^2\)
\(\Rightarrow2\left(ab+ac+bc\right)=1-a^2-b^2-c^2\)
Vì \(1-a^2-b^2-c^2< 1\)
\(\Rightarrow2\left(ab+ac+bc\right)< 1\)
\(\Rightarrow ab+ac+bc< \dfrac{1}{2}\)
a + b + c =1 ⇔ (a + b + c)2 = 1
⇔ a2 + b2 + c2 + 2ab +2ac +2bc = 1
⇔2(ab + bc +ca) = 1 - a2 + b2 + c2
⇒2(ab + bc + ca) < 1
⇔ ab + bc +ca < \(\dfrac{1}{2}\)