K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)

\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)

\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)

\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)

\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)

\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)

Ta có: 5 ⋮ 5

⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm) 

10 tháng 11 2023

A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78

A =  (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)

A = 7.(1 + 72)  + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)

A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)

A = 7.50 + 72.50 + 75.50 + 76.50

A = 50.(7 + 72 + 75 + 76)

Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm

15 tháng 12 2018

\(A=7^3+7^4+7^5+7^6+...+7^{97}+7^{98}\)

\(=\left(7^3+7^4\right)+\left(7^5+7^6\right)+....+\left(7^{97}+7^{98}\right)\)

\(=7^3\left(1+7\right)+7^5\left(1+7\right)+...+7^{97}\left(1+7\right)\)

\(=\left(1+7\right)\left(7^3+7^5+...+7^{97}\right)\)

\(=8\left(7^3+7^5+...+7^{97}\right)⋮8\)

15 tháng 12 2018

Vì A có: 96 số hạng nên ta chia A thành 48 nhóm 1 nhóm có 2 số hạng

\(A=7^3+7^4+7^5+7^6+...........+7^{97}+7^{98}\)

\(A=\left(7^3+7^4\right)+\left(7^5+7^6\right)+...........+\left(7^{97}+7^{98}\right)=7^3\left(1+7\right)+7^5\left(1+7\right).....+7^{97}\left(1+7^{ }\right)\)

\(A=7^3.8+7^5.8+.......+7^{97}.8=8\left(7^3+7^5+........+7^{97}\right)⋮8\left(ĐPCM\right)\)

a) chẵn

c) 0

26 tháng 10 2018

Mẫu câu a)!! những câu khác ko lm đc ib!

a) Ta có:

\(A=2+2^2+2^3+2^4+...+2^{2010}.\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{2009}.3\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

Ta có:

\(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{2008}.7\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

26 tháng 10 2018

b,\(B=3+3^2+3^3+3^4+...+3^{2010}.\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{2009}.4\)

\(=4.\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3+3^2+3^3+3^4+...+3^{2010}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{2008}.13\)

\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)

18 tháng 10 2016

3.42+(57:56)-(2.24)

=3.42+57-6-24+1

=3.42+51-25

=(3.42)+5-32

=48+5-32

=53-32

=21

18 tháng 10 2016

để làm gì mà cần thế

12 tháng 7 2015

A chia hết cho 8

A=(1+7)+7^2(1+7)+......+7^100(1+7)

A=8+7^2.8+.........+7^100.8

A=8(1+7^2+...+7^100) chia hết cho 8

Vậy A chia hết cho 8

1 tháng 6 2018

A = 1 + 7 + 72 + 73 +...+ 7101

A = 70 + 71 + 72 + 73 + ... + 7101

A = ( 70 + 71 ) + ( 72 + 73 ) + ... + ( 7100 + 7101 )

A = 70 . ( 70 + 71 ) + 72 . ( 70 + 71 ) + ... + 7100 . ( 70 + 7)

A = 70 . 8 + 72 . 8 + ... + 7100 . 8

A = 8 . ( 70 + 72 + ... + 7100 ) \(⋮\)8

4 tháng 12 2016

 Để chứng minh A chia hết cho 3 thì nhóm như sau : A = (2 + 2^2) + (2^3 + 2^4) +......+ (2^2009 + 2^2010)

A = (2 + 2^2) + 2^2(2 + 2^2) +......+ 2^2008(2 + 2^2)

A = 6 + 2^2 . 6 + ......+ 2^2008 . 6

A = 6(1 + 2^2 +......+ 2^2008) chia hết cho 3

Để chứng minh A chia hết cho 7 thì ta nhóm như sau :

A = (2 + 2^2 + 2^3) + (2^4 + 2^5 + 2^6)+ ......+ (2^2008 + 2^2009 + 2^2010)

A = (2 + 2^2 + 2^3) + 2^3(2 + 2^2 + 2^3) + ....+ 2^2007(2 + 2^2 + 2^3)

A = 14 + 2^3 . 14 + .....+ 2^2007 . 14 A = 14(1 + 2^3 + .....+ 2^2007) chia hết cho 7

6 tháng 12 2016

24 nha banh sialo

Dài quá bạn ạ

Với lại giải thì mỏi cả tay mất

Những ai giỏi thì giải lần lượt cho bạn avt716616_60by60.jpgGirl xinh nha

Có thể mỗi bạn giải 1 bài

Các bạn hãy giúp đỡ bạn Girl xinh nha

3 tháng 1 2017

Cái này ghép số ý mà bạn

Chỉ là sợ sai nên mik hỏi ý kiến thôi