Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 (1/3 - 1/5 + 1/5 - 1/8 + 1/8 - 1/12 + 1/12 - 1/17) = 3(1/3 - 1/17) = 14/17
A = \(\frac{6}{3}.5+\frac{9}{5}.8+\frac{12}{8}.12+\frac{15}{12}.17\)
\(=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(=3\left(\frac{1}{3}-\frac{1}{17}\right)\)
\(=3\times\frac{14}{51}\)
\(=\frac{14}{17}\)
CHÚC BẠN HỌC TỐT !!!
đề sai thì phải
\(A=\frac{10}{2\cdot12}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}+\frac{1}{2\cdot3}+\frac{5}{12\cdot17}+\frac{6}{17\cdot23}+\frac{7}{23\cdot30}\)
\(A=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{2}-\frac{1}{3}+\frac{1}{12}-\frac{1}{17}+\frac{1}{17}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(A=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}\)
\(A=\frac{101}{120}\)
\(A=\frac{1}{2.12}+\frac{2}{3.5}+\frac{3}{5.8}+...+\frac{7}{23.30}\)
\(=\frac{1}{2}-\frac{1}{12}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\)
\(=\frac{1}{2}+\frac{1}{2}-\frac{1}{8}-\frac{1}{30}=1-\frac{19}{120}=\frac{101}{120}\)
\(=1-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-...+\dfrac{1}{47}-\dfrac{1}{57}\right)\)
\(=1-\dfrac{18}{57}=\dfrac{39}{57}=\dfrac{13}{19}\)
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
vì \(\frac{39}{200}< 1\) nên A < 1
\(A=\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
Áp dụng công thức \(\frac{b-a}{a.b}=\frac{1}{a}-\frac{1}{b}\) với a < b và a khác b khác 0, ta có:
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+...+\frac{1}{101}-\frac{1}{200}\\ =\frac{1}{5}-\frac{1}{200}\\ =\frac{40-1}{200}\\ =\frac{39}{200}\\ \frac{39}{200}< 1\\\Rightarrow A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=1-\frac{1}{16}< 1\)
Vậy \(S< 1\)
\(A=\frac{6}{3.5}+\frac{9}{5.8}+\frac{12}{8.12}+\frac{15}{12.17}\)
\(A=3.\left(\frac{2}{3.5}+\frac{3}{5.8}+\frac{4}{8.12}+\frac{5}{12.17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}\right)\)
\(A=3.\left(\frac{1}{3}-\frac{1}{17}\right)< 3.\frac{1}{3}=1\)
=> A < 1