Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt B= 15^2007+15^2006+...+15^2+15+1
15B=15^2008+15^2007+...+15^3+15^2+15
15B-B=15^2008-1
14B=15^2008-1
B=(15^2008-1)/14
thế vào A=350.(15^2008-1)/14+25
A=25(15^2008-1)+25
A=25(15^2008-1+1)
A=25.15^2008
A=5^2.5^2008.3^2008
A=5^2010.3^2008 chia hết cho 5^2010
A = 350.(252007 + 152006 + ... + 152 + 15 + 1) + 25
Đặt B = 152007 + 152006 + ... + 152 + 15
15B = 152008 + 152007 + ... + 153 + 152
15B - B = 152008 - 15
=> B = (152008 - 15)/4
=> A = 350.(152008 - 15/4 + 1) + 25
gọn thế này đủ chưa ?
Làm thì lm cho trót đi!! Nghĩ không ra phần b, mà tran thuy trang yêu cầu cao quá à!!
a)\(A-25=350.\left(15^{2007}+15^{2006}+...+15+1\right)\)
\(\frac{A-25}{350}=15^{2007}+15^{2006}+...+15+1\)
\(\frac{\left(A-25\right).15}{350}=15^{2008}+15^{2007}+...+15^2+15\)
\(\Rightarrow\frac{15.\left(A-25\right)}{350}-\frac{A-25}{350}=15^{2008}-1\)
\(\frac{15A-25.15-A+25}{350}=\frac{14A-25.14}{350}=15^{2008}-1\)
\(\frac{14\left(A-25\right)}{350}=15^{2008}-1\)
\(A-25=\frac{350\left(15^{2008}-1\right)}{14}=25.\left(15^{2008}-1\right)\)
\(\Rightarrow A=25.15^{2008}\)
b)15 chia hết cho 5 suy ra 152008 chia hết cho 52008
suy ra 25.152008 chia hết cho 25.52008=52010
a)\(A=25.15^{2008}\)
b)A=25.152008 chia hết cho 25.52008=52010 ,suy ra điều phải chứng minh
1) nhìn là bt liền : \(2^{16}< 3^{25}\)
2) a) ta có : \(7^{15}-7^{14}+7^{13}=7^{13}\left(7^2-7+1\right)⋮7\left(đpcm\right)\)
b) câu này không CM đc . bn bấm máy nha :)
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
Câu 1 :
a) S1 = 1+2+3+...+999
Số số hạng trong S1 là 999
S1 = (1+999)x999:2=499500
S1 =499500
b) Số số hạng trong S2 là (2010-10):2+1=1001
S2= (10+2010)x1001:2=1011010
S2=1011010
c) Số số hạng trong S3 là (1001-21):2+1=491
S3=(21+1001)x491:2=250901
S3=250901
d)Số số hạng trong S5 là (79-1);3+1=27
S5=(1+79)x27:2=1080
S5=1080
e) Số số hạng trong S6 là (155-15):2+1=71
S6=(15+155)x71:2=6035
f) Số số hạng trong S7 là (115-15):10+1=11
S7= (15+115)x11:2=715
g) Số số hạng trong S4 là (126-24):1+1=103
S4= (24+126)x103:2=7725
Câu 2:
Ta có : a + 12 chia hết cho 36
a+12 chia hết cho 4,9
+) a+12 chia hết cho 4
Mà 12 chia hết cho 4
Suy ra: a chia hết cho 4 (nếu a ko chia hết cho 4 thì a+12 sẽ ko chia hết cho 4)
+) a+ 12 chia hết cho 9
Mà 12 ko chia hết cho 9
Suy ra a ko chia hết cho 9 ( nếu a chia hết cho 9 thì a+12 ko chia hết cho 9)
Vậy a chia hết cho 4; ko chia hết cho 9
Câu 3 :
a) Từ 1 đến 1000 có số số hạng chia hết cho 5 là:
(1000-5):5+1= 200(số)
ĐS: 200 số
b) +)1015+8 chia hết cho 2 vì 1015chia hết cho 2 và 8 chia hết cho 2
+)1015+8=10..0(15 chữ số 0)+8=10...08(14 chữ số 0)
Tổng các chữ số của số 10...08(14 chữ số 0) là 9 nên 1015+8 chia hết cho 9
c) +) 102010+8=10..0(2010 chữ số 0)+8=10...08(2009 chữ số 0)
Tổng các chữ số của số 10...08(2009 chữ số 0) là 9 nên 102010+8 chia hết cho 9
+) 102010+14=10..0(2010 chữ số 0)+14=10...014(2008 chữ số 0)
Tổng các chữ số của số 10...014(2008 chữ số 0) là 6 nên 102010+14 chia hết cho 3
+)102010+14 chia hết cho 2 vì 102010 là số chẵn và 14 là số chẵn
+)102010 -4=10..0(2010 chữ số 0)-4=99..96(2008 chữ số 9)
Tổng các chữ số của số 99...96(2008 chữ số 9) là : 2008x9+6=18078 chia hết cho 3
Nên 102010 -4 chia hết cho 3
Câu 4 :
mik bít làm nhưng buồn ngủ lắm, mai