K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DV
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DV
0
NH
1
18 tháng 7 2016
\(A=1+2+2^2+...+2^{30}\)
\(2A=2+2^2+...+2^{30}+2^{31}\)
\(\Rightarrow A=2^{31-1}\)
Vậy : \(A+1=2^{31}\)
LV
1
LV
2
AN
0
30 tháng 8 2015
Cau 1 . Ta co
A=2^450=(2^3)^150 =8^150
B=3^300=(3^2)^150=9^150
Do 8^150<9^150 => A<B
30 tháng 9 2018
\(A=1+2+2^2+...+2^{30}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{31}\)
\(\Rightarrow2A-A=A=2^{31}-1\)
\(\Rightarrow A+1=2^{30}\)
ND
2
11 tháng 7 2021
2A = 2 + 22 + 23 + ... + 2201
A = 2A - A = 2 + 22 + 23 + ... + 2201 - ( 1 + 2 + 22 + 23 + ... + 2200 )
= 2 + 22 + 23 + ... + 2201 - 1 - 2 - 22 - 23 - ... - 2200 = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
NA
1
12 tháng 10 2015
A=1+2+2^2+..+2^100
=>2A=2+2^+26+..+2^101
=>2A-A=(2+2^+26+..+2^101)-(1+2+2^2+..+2^100)
vậy A=2^101-1