Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 : Mạch điện nối tiếp
\(R_{tđ}=R_1+R_2+R_3+R_4+R_5+R_6=3+9+18+6+15+6=57\Omega\)
TH2 : Mạch điện song song
\(R_{tđ}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+\dfrac{1}{R_4}+\dfrac{1}{R_5}+\dfrac{1}{R_6}}=\dfrac{1}{\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{18}+\dfrac{1}{6}+\dfrac{1}{15}+\dfrac{1}{6}}=\dfrac{10}{9}\Omega\)
a; Điện trở tương đương của đoạn mạch là : \(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\) <=>\(\dfrac{1}{R_{tđ}} =\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}\) <=>\(\dfrac{1}{R_{tđ}}=\dfrac{11}{12}\) =>\(R_{tđ}=\dfrac{12}{11}\approx1,1\left(\Omega\right)\) b, HĐT của R3 là : \(U_3=I_3.R_3=0,6.6=3,6\left(V\right)\) Vì R1//R2//R3 =>U1=U2=U3=3,6(V) => \(I_1=\dfrac{U_3}{R_1}=\dfrac{3,6}{2}=1,8\left(A\right)\) => \(I_2=\dfrac{U_2}{R_2}=\dfrac{3,6}{4}=0,9\left(A\right)\)
Có : R1//R2//R3:
\(\Rightarrow\)R123=\(\frac{R_1.R_2.R_3}{R_2.R_3+R_1.R_3+R_1.R_2}=\frac{40.20.40}{20.40+40.40+40.20}=10\Omega\)
Vì R4nt (R1//R2//R3)
\(\Rightarrow\)Rtđ=R4+R123=10+10=20\(\Omega\)
\(\Rightarrow\)Ic=\(\frac{U_{AB}}{R_{tđ}}=\frac{20}{20}=1A\)
\(\Rightarrow\)Ic=I4=I123=1A \(\Rightarrow\)U4=I4.R4=1.10=10(V)
Có : R4nt(R1//R2//R3)\(\Rightarrow U_{AB}=U_4+U_{123}\)
\(\Rightarrow\)U123=UAB-U4=20-10=10(V)
mà R1//R2//R3 nên :
\(\Rightarrow\)U1=U2=U3=U123=10(V)
Khi đó : I1=\(\frac{U_1}{R_1}=\frac{10}{40}=0,25A\)
I2=\(\frac{U_2}{R_2}=\frac{10}{20}=0,5A\)
I3=\(\frac{U_3}{R_3}=\frac{10}{40}=0,25A\)
Vậy ....
R1nt(R2//R3)
a) \(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=2\left(\Omega\right)\)
\(\rightarrow R_{td}=R_1+R_{23}=4+2=6\left(\Omega\right)\)
b) Ta có : \(I_1=I_{23}=I=\dfrac{U}{R_{tđ}}=\dfrac{6}{2}=3A\)
\(U_{23}=U_2=U_3=I_{23}.R_{23}=3.2=6V\)
\(\rightarrow I_2=\dfrac{U_2}{R_2}=\dfrac{6}{6}=1A\)
Vì R1,R2,R3,R4,R5,R6 > Rtd nên không thể mắc cái nào nối tiếp đc cả .\(\Rightarrow R1//R2//R3//R4//R5//R6\)