K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

5 <  5 + 52 + 53 +....+52020 + 52021 

Chứ em

30 tháng 11 2023

5= 5+52+53+...+52020+52021.

ủa bn có nhầm j ko?

5 tháng 8 2023

a, A = 2 + 22 + 23 + 24 +....+ 260

A = (2 + 22) + ( 23 + 24) +...+ (259 + 260)

A = 2.(1 + 2) + 23.(1 + 2) +...+ 259.(1 + 2)

A = 2.3 + 23.3 +...+ 259.3

A = 3.( 2 + 23+...+ 259) vì 3 ⋮ 3 ⇒ A = 3.(2 + 23 +...+ 259) ⋮ 3 (đpcm)

A = 2 + 22 + 23+ 24+...+ 260 

A = ( 2 + 22 + 23) + ( 24 + 25 + 26) +...+ (258 + 259 + 260)

A = 2.( 1 + 2 + 4) + 24.(1 + 2 + 4)+...+ 258.(1 + 2+4)

A = 2.7 + 24.7 +...+258.7

A = 7.(2 + 2+ ...+ 258) vì 7 ⋮ 7 ⇒ A = 7.(2 + 24+...+ 258)⋮ 7(đpcm)

    A = 2 + 22 + 23 + 24 +...+ 260

    A = (2 + 22 + 23 + 24) +...+( 257 + 258 + 259+ 260)

   A = 2.(1 + 2 + 22 + 23) +...+ 257.(1 + 2 + 22+23)

   A = 2.30 + ...+ 257. 30

  A = 30.( 2 +...+ 257) vì 30 ⋮ 15 ⇒ 30.( 2 + ...+ 257) ⋮ 15 (đpcm)

 

 

 

 

a)

  •  \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+...+2^{58}.7\)

\(=7\left(2+2^4+2^{58}\right)⋮7\)

  • \(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+2^5.15+...+2^{57}.15\)

\(=15\left(2+2^5+2^{57}\right)⋮15\)

b) \(B=1+5+5^2+5^3+...+5^{96}+5^{97}+5^{98}\)

\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)

\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+..+5^{96}\left(1+5+5^2\right)\)

\(=31+5^3.31+...+5^{96}.31\)

\(=31\left(1+5^3+...+5^{96}\right)⋮31\)

3 tháng 11 2017

a/ \(1+5+5^2+..........+5^{501}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+............+\left(5^{500}+5^{501}\right)\)

\(=1\left(1+5\right)+5^2\left(1+5\right)+...........+5^{500}\left(1+5\right)\)

\(=1.6+5^2.6+.............+5^{500}.6\)

\(=6\left(1+5^2+..........+5^{500}\right)⋮6\left(đpcm\right)\)

b/ \(2+2^2+2^3+............+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+............+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+............+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+..........+2^{96}.31\)

\(=31\left(2+........+2^{96}\right)⋮31\left(đpcm\right)\)

3 tháng 11 2017

a)1+5+5^2+5^3+........+5^501

= 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501)

=6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500)

=6+150(5^2+5^3+.......+5^500)

mà 6 chia hết cho 6

150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150(5^2+5^3+.......+5^500) chia hết cho 6

=> 6+150+150(5^2+5^3)+150(5^4+5^5).......150(5^499+5^500) chia hết cho 6

=> 6+(5^2+5^3)+(5^4+5^5)......+(5^500+5^501) chia hết cho 6

=> 1+5+5^2+5^3+........+5^501 chia hết cho 6

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+......+5^{2020}\)

\(\Rightarrow5A=5^1+5^2+5^3+5^4+.......+5^{2021}\)

\(\Rightarrow5A-A=5^{2021}-5^0\)

\(\Rightarrow4A=5^{2021}-1\)

Vì \(5^{2021}-1\)và \(5^{2020}\)là 2 số tự nhiên liên tiếp

\(\Rightarrow\)\(4A\)và \(B\)là 2 số tự nhiên liên tiếp ( đpcm )

19 tháng 10 2020

\(A=5^0+5^1+5^2+5^3+...+5^{2020}\)

\(5A=5.\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(=5^1+5^2+5^3+5^4+...+5^{2021}\)

\(5A-A=\left(5^1+5^2+5^3+5^4+...+5^{2021}\right)-\left(5^0+5^1+5^2+5^3+...+5^{2020}\right)\)

\(4A=5^{2021}-5^0\)

\(=5^{2021}-1\)

mà \(B=5^{2021}\)

\(\Rightarrow\)4A và B là 2 số tự nhiên liên tiếp

7 tháng 11 2021

\(A=4+2^2+2^3+...+2^{2005}\)

\(2A=4+2^2+2^3+...+2^{2006}\)

\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)

\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)

\(A=2^{2006}\)

Vậy A là 1 luỹ thừa của cơ số 2

7 tháng 11 2021

\(B=5+5^2+...+5^{2021}\)

\(5B=5^2+5^3+...+5^{2022}\)

\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)

\(4B=5^{2022}-5\)

\(B=\frac{5^{2022}-5}{4}\)

\(B+8=\frac{5^{2022}-5}{4}+8\)

\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)

\(B+8=\frac{5^{2022}-5+32}{4}\)

\(B+8=\frac{5^{2022}+27}{4}\)

=> B + 8 k thể là số b/ph của 1 số tn