Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có \(a\left(2a-5c\right)=2a^2-5ac=2bc-5ac=c\left(2b-5a\right)\Rightarrow\frac{c}{2a-5c}=\frac{a}{2b-5a}\)
Các câu khác làm tương tự
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{5}=\dfrac{c}{4}\end{matrix}\right.\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-56}{7}=-8\)
Do đó: a=-80; b=-120; c=-96
a, Ta có: \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{15}=\frac{3a-7b+5c}{63-98+75}=\frac{30}{40}=\frac{3}{4}\)
\(a=\frac{63}{4};b=\frac{42}{4};c=\frac{45}{4}\)
b, Ta có : \(7a=9b=21c\Rightarrow\frac{7a}{63}=\frac{9b}{63}=\frac{21c}{63}\Rightarrow\frac{a}{9}=\frac{b}{7}=\frac{c}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{a}{9}=\frac{b}{7}=\frac{c}{3}=\frac{a-b+c}{9-7+3}=-\frac{15}{5}=-3\Rightarrow a=-27;b=-21;c=-9\)
|3a-2b|+|5c-7a|+(ab+bc+ac-500)^2023=0
=>3a-2b=0 và 5c-7a=0 và ab+bc+ac=500
=>3a=2b và 7a=5c và ab+bc+ac=500
=>a/2=b/3 và a/5=c/7
=>a/10=b/15=c/21=k
=>a=10k; b=15k; c=21k
ab+bc+ac=500
=>150k^2+210k^2+315k^2=500
=>k^2=20/27=60/81
TH1: k=2*căn 15/9
=>\(a=\dfrac{20\sqrt{15}}{9};b=\dfrac{10\sqrt{15}}{3};c=\dfrac{14\sqrt{15}}{3}\)
=>\(A=\left(3\cdot\dfrac{20\sqrt{15}}{9}-\dfrac{10\sqrt{15}}{3}-\dfrac{14\sqrt{15}}{3}\right)^{2014}=\left(-\dfrac{4\sqrt{15}}{3}\right)^{2014}=\left(\dfrac{4}{3}\sqrt{15}\right)^{2014}\)
TH2: k=-2*căn 15/9
=>\(a=-\dfrac{20\sqrt{15}}{9};b=-\dfrac{10\sqrt{15}}{3};c=-\dfrac{14\sqrt{15}}{3}\)
\(A=\left(3\cdot\dfrac{-20\sqrt{15}}{9}+\dfrac{10\sqrt{15}}{3}+\dfrac{14\sqrt{15}}{3}\right)^{2014}=\left(\dfrac{4}{3}\sqrt{15}\right)^{2014}\)
tại sao 3a-2b= 5c-7a = ab+bc+ac - 500 = 0 ạ?