K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 2 2020

\(P=x+\left(y^2+1\right)+\left(z^3+1+1\right)-3\ge x+2y+3z-3\)

Ta lại có: \(6=\frac{1}{x}+\frac{4}{2y}+\frac{9}{3z}\ge\frac{\left(1+2+3\right)^2}{x+2y+3z}\Rightarrow x+2y+3z\ge6\)

\(\Rightarrow P\ge6-3=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

14 tháng 6 2017

Đề không cho x,y,z không âm sao?

14 tháng 6 2017

chắc là có

25 tháng 5 2017

1.

Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:

         \(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

tương tự, ta có:

         \(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)

         \(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)

Cộng theo vế của 3 BĐT trên, ta được:

     \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)        (ĐPCM)

ý b nghĩ đã ~.~

25 tháng 5 2017

2. 

P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)

Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

9 tháng 2 2017

\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)

Cộng từng vế:

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)

Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)

\(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)

\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )

11 tháng 2 2017

bucminh chịu chết

26 tháng 10 2016

Đặt \(x=a;2y=b;3z=c\Rightarrow a+b+c=3\) 

\(T=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Áp dụng Bđt Cô si ngược dấu ta có:

\(T=\text{∑}a-\frac{a^2b}{1+b^2}\ge\text{∑}a-\frac{a^2b}{2b}=\text{∑}a-\frac{ab}{2}\)

\(=a+b+c-\frac{ab+bc+ca}{2}\ge a+b+c-\frac{\left(ab+bc+ca\right)^2}{6}\)\(=3-\frac{3^2}{6}=\frac{3}{2}\)

Dấu = khi \(a=b=c=1\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\)

3 tháng 2 2020

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

4 tháng 2 2020

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

NV
21 tháng 2 2020

\(\frac{1}{x^3y^3}+\frac{1}{x^3y^3}+1\ge\frac{3}{x^2y^2}\) ; \(\frac{y^3}{z^3}+\frac{y^3}{z^3}+1\ge\frac{3y^2}{z^2}\) ; \(x^3z^3+x^3z^3+1\ge3x^2z^2\)

\(\Rightarrow2VT+3\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)\ge2\left(\frac{1}{x^2y^2}+\frac{y^2}{z^2}+x^2z^2\right)+3\sqrt[3]{\frac{x^2y^2z^2}{x^2y^2z^2}}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

19 tháng 9 2019

a) \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2\left(y^2+\frac{1}{x^2}\right)\)

\(+\frac{1}{y^2}\left(y^2+\frac{1}{x^2}\right)=x^2y^2+2+\frac{1}{x^2y^2}\)

\(=2+\left(x^2y^2+\frac{1}{256x^2y^2}\right)+\frac{255}{256x^2y^2}\)

Áp dụng BĐT Cauchy - Schwar cho 2 số không âm, ta được:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

C/m được BĐT phụ: \(1=\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow16x^2y^2\le1\Leftrightarrow256x^2y^2\le16\Leftrightarrow\frac{255}{256x^2y^2}\ge\frac{255}{16}\)

\(\Rightarrow M\ge2+\frac{1}{8}+\frac{255}{16}=\frac{289}{16}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}x^2y^2=\frac{1}{256x^2y^2}\\x-y=0\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\))

19 tháng 9 2019

\(\frac{16}{3x+3y+2z}=\frac{16}{\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+\left(x+y\right)1}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\)

Tương tự \(\frac{16}{3x+2y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{y+z}\)

Cộng vế theo vế ta có:

\(16\left(\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}+\frac{1}{2x+3y+3z}\right)\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=24\)

\(\Rightarrow\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\left(đpcm\right)\)

P/S:Có dùng S-vác ngược dấu ạ.ý tưởng tách mẫu là từ tth_new - Trang của tth_new - Học toán với OnlineMath nha !