Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên ta chứng minh: \(\left(a+b+c\right)\left(x+y+z\right)\le3\left(ax+by+cz\right)\)
\(\Leftrightarrow ay+az+bz+bx+cx+cy\le2\left(ax+by+cz\right)\)
\(\Leftrightarrow a\left(y+z-2x\right)+b\left(z+x-2y\right)+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow a\left(y+z-2x\right)-b\left[\left(y+z-2x\right)+\left(x+y-2z\right)\right]+c\left(x+y-2z\right)\le0\)
\(\Leftrightarrow\left(a-b\right)\left(y+z-2x\right)+\left(c-b\right)\left(x+y-2z\right)\le0\)
Không mất tính tổng quát, giả sử: \(\hept{\begin{cases}a\ge b\ge c\\x\ge y\ge z\end{cases}}\)
Theo đó: \(\hept{\begin{cases}a-b\ge0\\y+z-2x\le0\end{cases}}\Rightarrow\left(a-b\right)\left(y+z-2x\right)\le0\)
Tương tự \(\left(c-b\right)\left(x+y-2z\right)\le0\).
Ta có đpcm.
Áp dụng vào bài toán:
Đặt \(a^2+b^2=x;b^2+c^2=y;c^2+a^2=z;a+b=p;b+c=q;c+a=o\), ta có:
Đpcm \(\Leftrightarrow\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\le\frac{3\cdot\frac{1}{2}\left(x+y+z\right)}{\frac{1}{2}\left(p+q+o\right)}=\frac{3\left(x+y+z\right)}{p+q+o}\)
\(\Leftrightarrow\left(\frac{x}{p}+\frac{y}{q}+\frac{z}{o}\right)\left(p+q+o\right)\le3\left(x+y+z\right)\)[*]
Mà theo bất đẳng thức đã chứng minh:
\(VT\left[+\right]\le3\left(\frac{x}{p}\cdot p+\frac{y}{q}\cdot q+\frac{z}{o}\cdot o\right)=3\left(x+y+z\right)=VP\)
Ta có đpcm
Dấu "=" xảy ra khi a = b = c
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
BĐT bên trái hiển nhiên là Nesbitt.
BĐT bên phải:
Sau khi quy đồng, phân tích thành nhân tử các kiểu gì đó thì cần chứng minh:
Giả sử . Ta cần chứng minh:
Đặt thì .
Cần chứng minh:
P/s: Bài này SOS bằng tay đẹp lắm mà thôi tạm thời làm biếng nên không SOS, dùng BW cho nhanh:P
SOS của tth_new ghê vãi,đề nghị tth_new check fb giúp t,nói mãi -_-
KMTTQ giả sử \(a\ge b\ge c\)
\(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Leftrightarrow\left(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}\right)+\left(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}\right)+\left(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left(\frac{a}{b^2+c^2}-\frac{a}{b+c}\right)+b\left(\frac{b}{c^2+a^2}-\frac{b}{c+a}\right)+c\left(\frac{c}{a^2+b^2}-\frac{c}{a+b}\right)\ge0\)
\(\Leftrightarrow a\left[\frac{ab+ac-b^2-c^2}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{bc+ba-c^2-a^2}{\left(c+a\right)\left(c^2+a^2\right)}\right]+c\left[\frac{ca+cb-a^2-b^2}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow a\left[\frac{b\left(a-b\right)+c\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\right]+b\left[\frac{c\left(b-c\right)+a\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]+c\left[\frac{a\left(c-a\right)+b\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma\left[\frac{ab\left(a-b\right)}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{ab\left(a-b\right)}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\)
\(\Leftrightarrow\Sigma ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\ge0\) ( đúng )
Vậy ta có ĐPCM
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Từ giả thiết của bài toán, ta biến đổi như sau:
\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với
\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được
\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)
\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)
\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)
\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)
Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Cô Quản Lý Nguyễn Linh Chi ơi cô bảo bạn đăng bài tham khảo bạn làm nhưng đã có ai làm bài đâu ạ
\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{c\left(a^2+b^2\right)}{a+b}+\frac{a\left(b^2+c^2\right)}{b+c}+\frac{b\left(c^2+a^2\right)}{c+a}\le a^2+b^2+c^2\)
\(\Leftrightarrow\left(\frac{\left(a^2+b^2\right)c}{a+b}-c^2\right)+\left(\frac{\left(b^2+c^2\right)a}{b+c}-a^2\right)+\left(\frac{\left(c^2+a^2\right)b}{c+a}-b^2\right)\)
\(\Leftrightarrow\frac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\frac{ab\left(b-a\right)+ca\left(c-a\right)}{b+c}\)
\(+\frac{bc\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\)
\(\Leftrightarrow ab\left(a-b\right)\left(\frac{1}{c+a}-\frac{1}{b+c}\right)+ca\left(c-a\right)\left(\frac{1}{b+c}-\frac{1}{a+b}\right)\)
\(+bc\left(b-c\right)\left(\frac{1}{a+b}-\frac{1}{a+c}\right)\le0\)
\(\Leftrightarrow\frac{-ac\left(c-a\right)^2}{\left(a+b\right)\left(b+c\right)}+\frac{-bc\left(c-b\right)^2}{\left(a+b\right)\left(a+c\right)}+\frac{-ab\left(b-a\right)^2}{\left(a+c\right)\left(b+c\right)}\le0\)*đúng với mọi a,b,c dương*
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c