Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd-b^2cd=abc^2+abd^2\)
\(\Leftrightarrow a^2cd-abc^2-abd^2+b^2cd=0\)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ac-bd=0\\ad-bc=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ac=bd\\ad=bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\) (ĐPCM)
Bài 1:
Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)
Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)
Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)
Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)
\(\Rightarrow 1-a^{1-a}\geq 0\)
\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)
\(\Rightarrow a^a\geq a\)
Tương tự: \(b^b\geq b\)
\(\Rightarrow a^ab^b\geq ab\) (đpcm)
Bài 2:
Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)
\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)
\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)
\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)
\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)
Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)
Tức là \(a-b; 3^a-3^b\) luôn cùng dấu
\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)
\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)
Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)
Do đó $(*)$ đúng, ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
\(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\)
\(\Leftrightarrow a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{1}{c}-\dfrac{1}{b}\\b-c=\dfrac{1}{a}-\dfrac{1}{c}\\c-a=\dfrac{1}{b}-\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{b-c}{bc}\\b-c=\dfrac{c-a}{ca}\\c-a=\dfrac{a-b}{ab}\end{matrix}\right.\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{a^2b^2c^2}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(1-\dfrac{1}{a^2b^2c^2}\right)=0\)
Dễ thấy \(1-\dfrac{1}{a^2b^2c^2}\ne0\left(abc\ne\pm1\right)\)
\(\Leftrightarrow a=b=c\) ( đpcm )
Tìm trước khi hỏi Câu hỏi của Phan Đình Trường - Toán lớp 8 | Học trực tuyến
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
\(A=\dfrac{a^4}{a\left(b+c\right)}+\dfrac{b^4}{b\left(a+c\right)}+\dfrac{c^4}{c\left(a+b\right)}\)
\(\Rightarrow A\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2ab+2ac+2bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+a^2+c^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{2}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}a=b=c=\dfrac{\sqrt{6}}{3}\\a=b=c=\dfrac{-\sqrt{6}}{3}\end{matrix}\right.\)
Bạn chép đề sai?
\(a^3+b^3+c^3=3abc\\ \left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\\ \left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Do \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Rightarrow a=b=c\)
=>P=20093
Ta có \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ac+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2ac-2bc=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\left(tm\right)\\a=b=c\left(ktm\right)\end{matrix}\right.\)\(\Leftrightarrow a+b+c=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\)
Ta có \(P=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\Leftrightarrow abc.P=ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b+c-a\right)+ca\left(c-a\right)=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)=b\left(a-b\right)\left(a-c\right)-c\left(b-a\right)\left(c-a\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\Leftrightarrow P=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}\)\(Q=\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right).Q=c\left(b-c\right)\left(c-a\right)+a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-\left(c+b\right)\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(b-c\right)\left(c-a\right)-c\left(a-b\right)\left(c-a\right)-b\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)=c\left(c-a\right)\left(2b-c-a\right)-b\left(a-b\right)\left(2c-a-b\right)=c\left(c-a\right)3b-b\left(a-b\right)3c=3bc\left(b+c-2a\right)=-9abc\Leftrightarrow Q=\dfrac{-9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)Vậy \(P.Q=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc}.\dfrac{9abc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=9\)