K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 1:

Với $a=0$ hoặc $b=0$ thì ta luôn có \(ab=a^ab^b\)

Với $a\neq 0; b\neq 0$ , tức là \(a,b\in (0;1]\)

Ta có: \(a^a-a=a(a^{a-1}-1)=a(\frac{1}{a^{1-a}}-1)=\frac{a}{a^{1-a}}(1-a^{1-a})\)

Với \(0\leq a\leq 1; 1-a\geq 0\Rightarrow a^{1-a}\leq 1\)

\(\Rightarrow 1-a^{1-a}\geq 0\)

\(\Rightarrow a^a-a=\frac{a}{a^{1-a}}(1-a^{1-a})\geq 0\)

\(\Rightarrow a^a\geq a\)

Tương tự: \(b^b\geq b\)

\(\Rightarrow a^ab^b\geq ab\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

Bài 2:

Ta có :\(\frac{1}{3^a}+\frac{1}{3^b}+\frac{1}{3^c}\geq 3\left(\frac{a}{3^a}+\frac{b}{3^b}+\frac{c}{3^c}\right)\)

\(\Leftrightarrow \frac{1-3a}{3^a}+\frac{1-3b}{3^b}+\frac{1-3c}{3^c}\geq 0\)

\(\Leftrightarrow \frac{b+c-2a}{3^a}+\frac{a+c-2b}{3^b}+\frac{a+b-2c}{3^c}\geq 0\) (do $a+b+c=1$)

\(\Leftrightarrow (a-b)\left(\frac{1}{3^b}-\frac{1}{3^a}\right)+(b-c)\left(\frac{1}{3^c}-\frac{1}{3^b}\right)+(c-a)\left(\frac{1}{3^a}-\frac{1}{3^c}\right)\geq 0\)

\(\Leftrightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}+\frac{(b-c)(3^b-3^c)}{3^{b+c}}+\frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0(*)\)

Ta thấy, với mọi \(a\geq b\Rightarrow 3^a\geq 3^b; a\leq b\Rightarrow 3^a\leq 3^b\)

Tức là \(a-b; 3^a-3^b\) luôn cùng dấu

\(\Rightarrow (a-b)(3^a-3^b)\geq 0\). Kết hợp với \(3^{a+b}>0, \forall a,b\)

\(\Rightarrow \frac{(a-b)(3^a-3^b)}{3^{a+b}}\geq 0\)

Tương tự: \(\frac{(b-c)(3^b-3^c)}{3^{b+c}}\geq 0; \frac{(c-a)(3^c-3^a)}{3^{c+a}}\geq 0\)

Do đó $(*)$ đúng, ta có đpcm.

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

22 tháng 3 2021

1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)

\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)

(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c

22 tháng 3 2021

2) Áp dụng kết quả phần 1 ta có:

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)

5 tháng 11 2018

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

Theo đề bài \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(\Rightarrow2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=0\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=0\)

\(\Rightarrow\frac{c+a+b}{abc}=0\) mà \(a;b;c\ne0\Rightarrow abc\ne0\Rightarrow a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=-\left(a^3+b^3+c^3\right)\)

Mà \(3\left(a+b\right)\left(b+c\right)\left(c+a\right)\) chia hết cho 3 nên \(-\left(a^3+b^3+c^3\right)\) chia hết cho 3

Nên \(a^3+b^3+c^3\) chia hết cho 3

8 tháng 8 2017

1.Ta có :\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^2-xy+y^2\) (do x+y=1)

\(=\dfrac{3}{4}\left(x-y\right)^2+\dfrac{1}{4}\left(x+y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)\(=\dfrac{1}{4}.1=\dfrac{1}{4}\)

Dấu "=" xảy ra khi :\(x=y=\dfrac{1}{2}\)

Vậy \(x^3+y^3\ge\dfrac{1}{4}\)

8 tháng 8 2017

2.

a) Sửa đề: \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a^3-a^2b\right)+\left(b^3-ab^2\right)\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng vì \(a,b\ge0\))

Đẳng thức xảy ra \(\Leftrightarrow a=b\)

b) Lần trước mk giải rồi nhá

3.

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel\(P=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{\left(x+y+z\right)+3}=\dfrac{9}{3+3}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{y+1}=\dfrac{1}{z+1}\\x+y+z=3\end{matrix}\right.\Leftrightarrow x=y=z=1\)

b) \(Q=\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}+\dfrac{z}{z^2+1}\le\dfrac{x}{2\sqrt{x^2.1}}+\dfrac{y}{2\sqrt{y^2.1}}+\dfrac{z}{2\sqrt{z^2.1}}\)

\(=\dfrac{x}{2x}+\dfrac{y}{2y}+\dfrac{z}{2z}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

Đẳng thức xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

22 tháng 3 2021

Đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right).64}}\)\(=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\left(2\right)\)

\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3a}{4}\left(3\right)\)

Từ (1), (2), (3), ta được:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)\(+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}+\frac{1+a}{8}+\frac{1+b}{8}+\frac{1+c}{8}\)\(\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)

\(\Leftrightarrow A+\frac{1+a}{4}+\frac{1+b}{4}+\frac{1+c}{4}\ge\frac{3a}{4}+\frac{3b}{4}+\frac{3c}{4}\)

\(\Leftrightarrow A+\frac{1+a+1+b+1+c}{4}\ge\frac{3a+3b+3c}{4}\)

\(\Leftrightarrow A+\frac{3+a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)}{4}-\frac{3-a-b-c}{4}\)

\(\Leftrightarrow A\ge\frac{3\left(a+b+c\right)-\left(a+b+c\right)}{4}-\frac{3}{4}\)

\(\Leftrightarrow A\ge\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\left(4\right)\)

Mặt khác,  vì \(a,b,c>0\)nên áp dụng bất đẳng thức Cô-si cho 3 số dương, ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

Mà \(abc\ge1\Leftrightarrow\sqrt[3]{abc}\ge1\Leftrightarrow3\sqrt[3]{abc}\ge3\)

Do đó:

\(a+b+c\ge3\)

\(\Leftrightarrow2\left(a+b+c\right)\ge6\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}\ge\frac{6}{4}=\frac{3}{2}\)

\(\Leftrightarrow\frac{2\left(a+b+c\right)}{4}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\left(5\right)\)

Từ (4) và (5), ta được:


\(A\ge\frac{3}{4}\)(điều phải chứng minh)

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\abc=1\end{cases}}\Leftrightarrow a=b=c=1\)

Vậy \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)với \(a,b,c>0\)và \(abc\ge1\)

13 tháng 7 2021

Với   x,y>0x,y>0  đã cho, áp dụng bất đẳng thức Cô si ta có

                         \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{x}+\dfrac{1+c}{y}\ge\dfrac{3a}{\sqrt[3]{xy}}(1+b)(1+c)a3+x1+b+y1+c3xy3a

Kỳ vọng rằng bất đẳng thức cần chứng minh trở thành đẳng thức khi a=b=c=1a=b=c=1, ta chọn x>0x>0 sao cho \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}=\dfrac{1+b}{x}=\dfrac{1+c}{y}(1+b)(1+c)a3=x1+b=y1+c xảy ra khi a=b=c=1a=b=c=1, tức là     \dfrac{1}{4}=\dfrac{2}{x}=\dfrac{2}{y}\Leftrightarrow x=y=841=x2=y2x=y=8. Vì vậy

                       \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}(1+b)(1+c)a3+81+b+81+c43a 

Viết hai bất đẳng thức tương tự rồi cộng theo vế ba bất đẳng thức này ta có

     \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{3}{4}+\dfrac{a+b+c}{4}\ge(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c3+43+4a+b+c

                                                          \dfrac{3}{4}\left(a+b+c\right)43(a+b+c)

Hay   \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{1}{2}\left(a+b+c\right)-\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c321(a+b+c)43

Mà    a+b+c\ge3\sqrt[3]{abc}\ge3a+b+c33abc3 . Suy ra

                        \dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{3}{4}(1+b)(1+c)a3+(1+c)(1+a)b3+(1+a)(1+b)c343

 
              
 
22 tháng 3 2021

\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\ge\frac{3}{2}\)( GT abc = 1 )

\(\Leftrightarrow\frac{bc}{ab+ac}+\frac{ac}{ab+ac}+\frac{ab}{ac+bc}\ge\frac{3}{2}\). Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)ta được bất đẳng thức Nesbitt quen thuộc :

\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)( em không chứng minh )

Vậy ta có đpcm

Đẳng thức xảy ra <=> x = y = z <=> a = b = c = 1

13 tháng 7 2021

Do giả thiết  abc=1abc=1 nên

            \dfrac{1}{a^2\left(b+c\right)}=\dfrac{bc}{a^2bc\left(b+c\right)}=\dfrac{bc}{a\left(b+c\right)}=\dfrac{bc}{ab+ac}a2(b+c)1=a2bc(b+c)bc=a(b+c)bc=ab+acbc

Đặt       x=bc,y=ca,z=abx=bc,y=ca,z=ab thì x,y,z>0x,y,z>0 và bất đẳng thức cần chứng minh trở thành bất đẳng thức quen thuộc 

      \dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}y+zx+z+xy+x+yz23.

5 tháng 11 2018

Ta có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{1}{ab}+2.\dfrac{1}{ac}+2.\dfrac{1}{bc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\Leftrightarrow2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)=0\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=0\Leftrightarrow\dfrac{c+b+a}{abc}=0\Leftrightarrow a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3=0\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b\right)=0\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)

\(3abc⋮3\)

Suy ra a3+b3+c3\(⋮3\)