K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

 

3/ Ta có: A=xxyy=1000x+100x+10y+y=1100x+11y=11(100x+y)

Đề A là scp thì 100x+y =11.t2 (t thuộc Z) (1)

Ta có: 1=<x=<9 <=>100=<100x=<900(2)

                0=<y=<9 (3)

Từ (2) và (3)=> 100=<100x+y=<909 (4)

Từ (1) và (4)=> 100x+y thuộc {176;275;396;539;704;891}

Mà 100x+y là số có dạng x0y(có dấu gạch trên đầu)

Do đó, x0y=704=> x=7 và y= 4

 

8 tháng 4 2015

Bài 2:

a/ gọi 3 số chính phương liên tiếp đó là: (x-1)2;x2;(x+1)2

Ta có: (x-1)2+x2+(x+1)2= x2-2x+1+x2+x2+2x+1= 3x2+2 

=> Tổng 3 số cp liên tiếp chia 3 dư 2

c/ Gọi 2 số lẻ đó là (2x-1)2 và (2x+1)2

(2x-1)2+(2x+1)2= 4x2-4x+1 +4x2+4x+1

                       = 8x2+2=2(4x2+1)

Ta có: 2 chia hết cho 2

=> 2(4x2+1) là scp thì 4x2+1 chia hết cho 2

mà 4x2+1 là số lẻ nên không chia hết cho 2

Do đó. tồng bình phương của 2 số lẻ bất kì không phải là số chính phương

 

2 tháng 3 2022

guyrt8yfjgdfjvxkfjghdgfkg123456781548656

3 tháng 7 2017

Cái chỗ zz có vấn đề thì phải :)
Đề sai khi (x,y,z)=(-1,-1,4)

4 tháng 7 2017

đề bài này mình viết sai nhé các bạn!
cho mình xin lỗi

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

16 tháng 8 2020

xyz là số chính phương

4 tháng 4 2016

Sao ko thay cau tra loi cua may ban trc vay

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.