K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\Rightarrow\left\{{}\begin{matrix}a=2018k\\b=2019k\\c=2020k\end{matrix}\right.\)

\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\\ M=4\left(2018k-2019k\right)\left(2019k-2020k\right)-\left(2020k-2018k\right)^2\\ M=4\cdot\left(-1\right)\cdot\left(-1\right)\cdot k^2-\left(2k\right)^2\\ M=4k^2-4k^2=0\)

21 tháng 12 2019

Cảm ơn bạn

5 tháng 11 2019

Đặt \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=k\)=> \(\hept{\begin{cases}a=2018k\\b=2019k\\c=2020k\end{cases}}\)

Khi đó, ta có: 4(2018k - 2019k)(2019k - 2020k) = 4(-k)(-k) = 4(-k)2 = 4k2 (1)

        (2018k - 2020k)2 = (-2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a - b)(b - c) = (a - c)2

5 tháng 2 2020

Ta có: \(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2018}=\frac{b}{2019}=\frac{c}{2020}=\frac{a-b}{2018-2019}=\frac{b-c}{2019-2020}=\frac{a-c}{2018-2020}.\)

15 tháng 3 2024

gọi a/2019=b/2020=c/2021 là x

\(\Rightarrow\)a=2019*x ;b=2020*x;c=2021*x

\(\Rightarrow\)M=4*(2019*x-2020*x)*(2020-2021)-(2021*x-2019*x)^2

\(\Rightarrow\)M=4*(-x)*(-x)-(2x)^2

\(\Rightarrow\)M=4*x^2-4*x^2

⇒M=0

18 tháng 10 2021

Ta có :

Đặt \(\frac{a}{2019}\)\(\frac{b}{2020}\)\(\frac{c}{2021}\)= k

=> a = 2019k; b = 2020k; c = 2021k

M = 4(a-b).(b-c) - (c-a)

M = 4(2019k- 2020k). (2020k-2021k) - (2021k - 2019k)

M = 4.(-1)k.(-1)k - 2k

M = 4k2 - 2k

(Hình như mình thấy đề bạn có gì sai sai)

18 tháng 10 2021
Bài này dễ tý nx mk giải đc ko, mk đà hc
9 tháng 4 2020

\(a+b+c = 1 ; 1/a + 1/b + 1/c = 1 \)

\(=> (a+b+c)(1/a +1/b+1/c) = 1\)

\(<=> a/b + b/a + a/c + c/a + b/c + c/b + 3 - 1 = 0\)

\(<=> (a^2+b^2)/ab + (a^2+c^2)/ac + (b^2+c^2)/bc + 2 =0\)

\(<=> (a^2 + b^2).c + (a^2+c^2).b + (b^2+c^2).a + 2abc = 0\)

\(<=> a^2c + b^2c + a^2b + c^2b + ab^2 + ac^2 + 2abc =0 \)

\(<=> a^2c + ac^2 + abc + a^2b+ ab^2 + abc + b^2c + bc^2 =0\)

\(<=> ac(a+b+c) + ab(a+b+c) + bc(b+c) =0 \)

\(<=> a(b+c)(a+b+c) + bc(b+c) =0 \)

\(<=> (b+c)(a^2 + ab + ac + bc ) = 0 \)

\(<=> (b+c)[a(a+b) + c(a+b)] =0\)

\(<=> (b+c)(a+b)(a+c) =0 \)

<=> 1 trong 3 số \(b+c;a+b ; a+c = 0\)

\(a+b=0 => a= -b => a + b + c = 1 <=> c = 1 ; a = b = 0\)

Thay vào S ta được : \(\Rightarrow S=0^{2019}+0^{2019}+1^{2019}=1\)

4 tháng 9 2016

a=2009,b=2010,c=2011

M=4(2009-2010)(2010-2011)=(2009-2011)^2=4

4 tháng 9 2016

Đặt \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=k\)

=>a=2009k;b=2010k;c=2011k

Xét \(4\left(a-b\right)\left(b-c\right)=4\left(2009k-2010k\right)\left(2010k-2011k\right)\)

\(=4\left(-k\right)\left(-k\right)=4k^2\left(1\right)\)

Xét \(\left(c-a\right)^2=\left(2011k-2009k\right)^2=\left(2k\right)^2=4k^2\left(2\right)\)

Từ (1) và (2)

=>4(a-b)(b-c)=(c-a)2=4k2

Hay M=4k2


 

29 tháng 3 2020

Bài 1 : Giải

Lưu ý : b2 = a.c ; c2 = b.d 

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Ta có : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

=> \(M=\frac{a}{d}=\frac{1995}{2019}=\frac{1}{2}\)

Vậy M = 1/2

Bài 2 : 

Ta có : x - y cùng tính chẵn lẻ với x - y

           : y - 2 cùng tính chẵn lẻ với y  - 2 

          : 2 - x cùng tính chẵn lẻ với 2-x 

=> | x - y | + | y - 2 | + | 2 - x |  cùng tính chẵn lẻ với ( x- y ) + ( y - 2 ) + ( 2 - x ) 

    =  x -y + y - 2 + 2 - x     = 0 là 1 số chẵn 

=> | x - y | + | y - 2 | + | 2 - x | là 1 số chẵn 

=> không có x ; y ; z thỏa mãn điều kiện trên

30 tháng 3 2020

2 ở đâu ra hả bạn