K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

\(a,b,c\ne0\)\(b^2=a\)\(bc=1\)

\(\Rightarrow b=1,c=1\)\(1^2=a\Leftrightarrow a=1\)

\(\frac{a}{b}=\frac{a+b-1}{b-c+1}=\frac{1+1-1}{1-1+1}=1\)

Mà \(\frac{a}{b}=\frac{1}{1}=1\)

\(\Rightarrow\frac{a}{b}=\frac{a+b-1}{b-c+1}\)

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

5 tháng 10 2015

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)

=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)

=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)

5 tháng 10 2015

Câu 2 :

Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

16 tháng 12 2018

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

27 tháng 3 2024

Ta có: (a3+b3+c3)/ (b3+c3+d3) = a3/b= b3/c= c3/d3 (1)

mà b2 = ac ; c2 = bd

=> b3/c= bac/cbd = a/d (2)

Từ (1) & (2) => (a3+b3+c3)/ (b3+c3+d3) = a/d

9 tháng 11 2016

\(a+d=b+c\Rightarrow\left(a+d\right)^2=\left(b+c\right)^2\Rightarrow a^2+d^2+2ad=b^2+c^2+2bc.\)

Do \(a^2+d^2=b^2+c^2\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

9 tháng 1 2019

Câu 1 .

\(\left|x^2+|x+1|\right|=x^2+5\)

\(Đkxđ:x^2+5\ge0\)

\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 ) 

\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha ) 

Vậy : x = 4 hoặc x = -6