Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn giúp mình với nha !
CMR nếu n và n2 + 2 là các số nguyên tố thì n3 + 2 cũng là số nguyên tố !
nếu n=3 thì đúng
nếu n khác 3 thì n^2 + 2 chia hết cho 3 và>3 nên ko là số nguyên tố làm v đi
Nếu \(n>3\) mà \(n\) nguyên tố nên \(n\) chia 3 dư 1 hoặc 2 \(\Rightarrow n=3k\pm1\left(k\inℕ^∗\right)\)
Khi đó : \(n^2+2=\left(3k\pm1\right)^2+2=9k^2\pm3k+3⋮3\)
Điều này trái với giả thiết.
Vì vậy \(n=3\). Thử lại ta thấy đúng : \(\hept{\begin{cases}n=3\\n^2+2=11\\n^3+2=29\end{cases}}\) ( đpcm )
neu p khong chia het cho 3 thi p2 chia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)
vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to
tuong tu, o cau b ta cung cm duoc p=3
Trường hợp n<2n<2 tự xét
Giả sử n là hợp số (n=kt)(n=kt) với k,tk,t nguyên dương
Cần CM 2n−12n−1 là hợp số.
Thật vậy, (2k−1)|(2kt−1)(2k−1)|(2kt−1) và (2t−1)|(2kt−1)(2t−1)|(2kt−1)