Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại 1 số nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m không chia hết cho 7 (*)
a chia hết cho 7, ta đặt a=7k với k\(\in\)N*
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7(tính chất chia hết của 1 tổng)
Trái với giả sử đã đưa ra ở (*)
Vậy luôn tồn tại 1 nguyên a chia hết cho 7, m,n là số tự nhiên thỏa mãn a6n+a6m chia hết cho 7 (đpcm)
Như Ngọc làm, chứng minh phản chứng!
Giả sử tồn tại một số a là nguyên , m,n là số tự nhiên và a chia hết cho 7 sao cho \(a^{6n}+a^{6m}\) không chia hết cho 7
Khi đó đặt a = 7k (k thuộc N*)
\(a^{6m}+a^{6n}=\left(7k\right)^{6m}+\left(7k\right)^{6n}=7^{6m}.k^{6m}+7^{6n}.k^{6n}\)luôn chia hết cho 7 (vô lí)
Vậy điều giả sử sai. Ta có đpcm.
2 \(A=n^3+n^2+5n^2+5n-24n-24=n\left(n+1\right)+5n\left(n+1\right)-24\left(n+1\right)\)
\(=\left(n+5n+24\right)\left(n+1\right)=\left(6n+24\right)\left(n+1\right)=6\left(n+4\right)\left(n+1\right)\)
vì \(6⋮6\Rightarrow A⋮6\)
2. A = n3 + 6n2 - 19n - 24
= n3 + n2 + 5n2 + 5n - 24n - 24
= (n3 + n2) + (5n2 + 5n) - (24n + 24)
= n2(n + 1) + 5n(n + 1) - 24(n + 1)
= (n + 1)(n2 + 5n - 24)
= (n + 1)(n2 + 2n + 3n + 6 - 30)
= (n + 1)[n(n + 2) + 3(n + 2) - 30]
= (n + 1)[(n + 2)(n + 3) - 30]
= (n v+ 1)(n + 2)(n + 3) - (n + 1).30
Vì (n + 1)(n + 2)(n + 3) là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n + 1)(n + 2)(n + 3) chia hết cho 2 và 3
Mà (2,3) = 1
=> (n + 1)(n + 2)(n + 3) chia hết cho 6
Mà (n + 1).30 chia hết cho 6
=> A chia hết cho 6
Nhớ cho mình **** nha
1. \(\left(8346+5\right).8351^{633}+\left(8242-1\right).8241^{141}\)
= \(8346.8351^{633}+5.8351^{633}+8242.8241^{141}-8241^{141}\)
= \(\left(8346.8351^{633}+8242.8241^{141}\right)+\left(5.8351^{633}-8241^{141}\right)\)
Xét \(5.8351^{633}-8241^{141}\) (1)
Từ (1) => \(\left(5.8351-8241\right).\left(8351^{632}+8241^{140}\right)\) chia hết cho 26 (2)
Mặt khác \(8346.8351^{633}+8242.8241^{141}\) cũng chia hết cho 26 (3)
Từ (2);(3) => \(8351^{634}+8241^{142}\) chia hết cho 26
tại sao 2222 đồng dư với 3 (mod 7) thì cũng có nghĩ là 2222 đồng dư với -4 (mod 7)
Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.
tha cho em! em mới lớp 5 thôi anh ạ!bạn nào ko giải được thì tick mik nhé!
xin lỗi em honk pít vì em mới họk
LỚP 5 THUI Ạ.