K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

Bạn may đấy...

                        ----------------

Ta có:  \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

nên   \(2025\ge\left(x+y\right)^2\)  (do  \(2\left(x^2+y^2\right)=2025\))

\(\Leftrightarrow\)  \(\sqrt{2025}\ge x+y\)

\(\Leftrightarrow\)   \(45\ge x+y\)  với mọi   \(x;y\)

Vậy,   Giá trị lớn nhất  của  \(x+y\)  là  \(45\)

 

4 tháng 1 2016

vay lam sao ra dc vay

 

19 tháng 3 2017

Dùng bất đẳng thức Bu-nhi-a là ra rồi

18 tháng 3 2017

(X+y)2=x2+y2+2xy

Lại có: 2xy <= x2+y2

=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2

=> Giá trị lớn nhất của (x+y)2 là 2

22 tháng 11 2015

x2 +4x+y2-12 =0 => (x+2)2 =(4-y)(4+y) ; vì x;y thuộc Z => 4-y = 4+y => y =0 => (x+2)2 =16

x +2 = 4 => x =2 

hoăc x+2 =-4 => x =-6

=> Pmax=x2 +y2 = (-6)2 +0 = 36 khi x = -6; y =0

6 tháng 6 2016

\(\Rightarrow\left(x-3\right)^2-4+y^2=0\)

x=3 

y=2

P=13

6 tháng 6 2016

x^2+y^2-6x+5=0

<=>x^2-6x+9+y^2-4=0

<=> (x-3)^2+(y^2-4)=0

<=> (x-3)^2=0 hoặc y^2-4=0

<=> x=3 và y=-2;2

ta có P=x^2+y^2=3^2+2^2=13>=13

Max P=13 <=> x=3;y=-2;2