Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=2a+2b\)
\(-2b-b=2a-a\)
\(-3b=a=>a=-3b\left(Dpcm\right)\)
\(a=-3b=>\frac{a}{b}=\frac{1}{-3}\)
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
3) => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)
\(ab=\frac{a}{b}\)
\(a+b=ab=>ab-a-b=0\)
\(ab-b=a\)
\(b.\left(a-1\right)=a\)
\(\frac{a}{b}=a-1\)