Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức trên ta có ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)
Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)
Áp dụng (1) và (2) ta có:
P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4
Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:
4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4
Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)
( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )
Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )
\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)
Dấu "=" xảy ra <=> a=b=1/2
Vậy ...
đại khái giống Ngọc thôi, sửa 1 số lỗi
\(P=1-2\left(ab^2+bc^2+ca^2\right)-2abc\)
\(b=mid\left\{a;b;c\right\}\)\(\Rightarrow\)\(ab^2+ca^2\le a^2b+abc\)
\(\Rightarrow\)\(P\le1-2a^2b-2bc^2-4abc=1-2b\left(c+a\right)^2\le1-8\left(\frac{b+\frac{c+a}{2}+\frac{c+a}{2}}{3}\right)^3=\frac{19}{27}\)
ta có ab+bc+ca=(a+b+c)(ab+bc+ca)=(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc
=> a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=1-2(ab+bc+ca)=1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]
do đó P=2(a2b+b2c+c2a)+1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]+4abc
=1-2(ab2+bc2+ca2)
không mất tính tổng quát giả sử a =<b=<c. suy ra
a(a-b)(b-c) >=0 => (a2-a)(b-c) >=0
=> a2b-a2c-ab2+abc >=0 => ab2+ca2=< a2b+abc
do đó ab2+bc2+ca2+abc=(ab2+ca2)+bc2+abc =< (a2b+abc)+b2c+abc=b(a+c)2
với các số dương x,y,z ta luôn có: \(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\ge0\)
=> \(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\left(\frac{x+y+z}{3}\right)^2\)(*)
dấu "=" xảy ra khi và chỉ khi x=y=z
áp dụng bđt (*) ta có:
\(b\left(a+c\right)^2=ab\left(\frac{a+c}{2}\right)\left(\frac{a+c}{2}\right)\le4\left(\frac{b+\frac{a+c}{2}+\frac{a+c}{2}}{3}\right)^3=4\left(\frac{a+b+c}{3}\right)^3=\frac{4}{27}\)
=> P=1-2(ab2+bc2+ca2+abc) >= 1-2b(a+c)2 >= 1-2.4/27=19/27
vậy minP=19/27 khi x=y=z=1/3