K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Áp dụng bất đẳng thức trên ta có  ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)

Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)

Áp dụng (1) và (2) ta có:

P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4

Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4 

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)

30 tháng 12 2016

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 1 2017

tao ko biet

9 tháng 9 2016

Ta có : \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}\left(a+b\right)}{2}\)

Tương tự : \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}\left(b+c\right)}{2}\) ; \(\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}\left(c+a\right)}{2}\)

Suy ra : \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}}{2}.2.\left(a+b+c\right)=\sqrt{3}\)

Vậy MIN B = \(\sqrt{3}\) \(\Leftrightarrow\begin{cases}a+b+c=1\\a=b=c\end{cases}\)

\(\Leftrightarrow a=b=c=\frac{1}{3}\)

12 tháng 5 2019

Dùng Buniacoxki

=> MinP=9 khi a=b=c

16 tháng 5 2017

Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)

Thì ta có:

\(\hept{\begin{cases}p^2-2q=3\\A=2p+\frac{q}{r}\end{cases}}\)

Ta có: \(3pr\le q^2\) (cái này dễ thấy nên mình không chứng minh nha)

\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}=\frac{6p}{2q}=\frac{6p}{p^2-3}\)

Thế vô A ta được

\(A=2p+\frac{q}{r}\ge2p+\frac{6p}{p^2-3}\)

Ta chứng minh \(2p+\frac{6p}{p^2-3}\ge9\)

\(\Leftrightarrow2p^3-9p^2+27\ge0\)

\(\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\) (đúng)

Vậy GTNN là A = 9

15 tháng 5 2017

bài này vừa read buổi tối này nek, xài UCT ,tiện thể cho hỏi lun do máy t lỗi hay do hệ thống z , k load bài nào luôn 

26 tháng 2 2018

Áp dụng bđt : 1/a + 1/b >= 4/a+b thì :

p = 1/a + 1/b >= 4/a+b >= 4/\(2\sqrt{2}\)=  \(\sqrt{2}\)

Dấu "=" xảy ra <=> a=b=\(\sqrt{2}\)

Vậy ...............

Tk mk nha