K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

O O 1 2 A B E F M N K L

Gọi BK và BL lần lượt là đường kính cảu đường tròn (O1) và (O2).

Khi đó ^BAK + ^BAL = 900 + 900 = 1800 => K,A,L thẳng hàng

Đồng thời ^KFL = ^LEK = 900 => Tứ giác EFKL nội tiếp đường tròn (KL)

=> ^ELK = ^BFE = ^MBF hay ^BNA = ^MBF => AN // BF

Mà tứ giác ANBF nội tiếp nên tứ giác ANBF là hình thang cân => AF = BN

Tương tự như thế: AE = BM. Vì vậy AE + AF = BN + BM = MN (đpcm).

3 tháng 3 2019

O O E B A 1 2 M J C F I x K N

a) Gọi AM cắt (O2) tại N khác M. Khi đó: Dễ thấy: ^MFE=^MNE = ^MO2E/2 = ^MO1J/2 = ^MAJ

=> ^MFI = ^MCI (Do ^MAJ = ^MCI) => Tứ giác MCFI nội tiếp => ^JAM = ^MCI = ^MFI = ^MEB hay ^JAM = ^JEA

Từ đó: \(\Delta\)JAM ~ \(\Delta\)JEA (g.g) => JA2 = JM.JE (1)

Ta có: ^JIM = ^CIM = ^CFM = ^FEM => \(\Delta\)JIM ~ \(\Delta\)JEI (g.g) => IJ2 = JM.JE (2)

Từ (1);(2) suy ra: JA2 = IJ2 = JM.JE => \(JA=IJ=\sqrt{JM.JE}\) (đpcm).

b) Gọi Cx là tia đối tia CA. Ta có đẳng thức về góc: ^ICx = ^JCA = ^JMA = ^JAB (Vì \(\Delta\)JAM ~ \(\Delta\)JEA)

=> ^ICx = ^JAB = ^ICB => CI là tia phân giác ^BCx hay CI là tia phân giác ngoài tại C của \(\Delta\)ABC (đpcm).

c) Ta thấy: \(\Delta\)IKC ~ \(\Delta\)IJA, JA = JI (cmt) => KI = KC (3)

Theo câu b thì ^JAB = ^JCA = ^JBA => \(\Delta\)ABJ cân tại J => JA = JB = JI => \(\Delta\)IJB cân tại J

=> ^CBI = ^JBI - ^JBC = (1800 - ^IJB)/2 - ^JBC = (1800 - ^IJB - 2.^JBC)/2 = (1800 - ^BAJ - ^JBC)/2

= (^ACB + ^JBA - ^JAC)/2 = (^ACB + ^BAC)/2 => BI là phân giác ^CBE.

Từ đó I là tâm bàng tiếp ứng đỉnh A của \(\Delta\)ABC => AI là phân giác ^BAC

Do vậy, K là điểm chính giữa cung BC không chứa A của (O1) => KC = KB (4)

Từ (3);(4) suy ra: KB = KC = KI => K là tâm ngoại tiếp \(\Delta\)BCI (đpcm).

14 tháng 4 2019

A B C O O D P G E H F O 1 2 3 K

Gọi DA cắt (O3( tại G khác A, GP cắt FD tại K. Giao điểm thứ hai của BD và (BAF) là H.

Ta có ^APG = ^AEG = ^AFK => Tứ giác APKF nội tiếp => K thuộc (BAF)

Dễ thấy: ^AFK = ^AED = ^ABH = ^AFH => (AK(BAF) = (AH(BAF) => ^KBA = ^HFE.

Chứng minh được \(\Delta\)FDE ~ \(\Delta\)ADB (g.g) suy ra \(\frac{AB}{FE}=\frac{AD}{DF}=\frac{BD}{DF}=\frac{BK}{FH}\)

Từ đây có \(\Delta\)AKB ~ \(\Delta\)EHF (c.g.c) cho nên ^BAK = ^FEH = ^BFK. Do ^AFK = ^AED nên ^AFB = ^DEH

Kết hợp với ^HDE = 1800 - ^BDE = 1800 - ^BAE = ^BAF dẫn đến \(\Delta\)DEH ~ \(\Delta\)AFB (g.g)

=> \(\frac{HE}{BF}=\frac{DE}{AF}\). Lại có \(\Delta\)DGE ~ \(\Delta\)ACF (g.g) => \(\frac{DE}{AF}=\frac{GE}{CF}\). Suy ra \(\frac{HE}{BF}=\frac{GE}{CF}\)(*)

Mặt khác ta có biến đổi góc ^GEH = ^GED - ^DEH = ^AFC - ^AFB = ^CFB. Từ đó kết hợp với (*) ta thu được:

\(\Delta\)EGH ~ \(\Delta\)FCB (c.g.c) => ^EGH = ^FCB. Mà ^EGD = ^ACF nên ^DGH = ^ACB.

Khi đó dễ dàng chỉ ra \(\Delta\)ABC ~ \(\Delta\)DGH (g.g) => \(\Delta\)DGH cân tại D => ^DGH = ^DHG

Ta thấy ^DGP = ^BAP = ^DGH => Tứ giác PGHD nội tiếp. Từ đây ^DPK = ^DHG = ^DGH = ^DPH

Do đó PD là phân giác ^KPH. Chú ý ^APG = ^AEG = ^AFD = ^ABH = ^APH => PA là phân giác ^HPG

Mà ^KPH và ^HPG kề bù nên PA vuông góc PD hay ^APD = 900 (đpcm).

30 tháng 9 2019

tớ xin chúc mừng nguyễn tất đạt nhá

28 tháng 2 2019

O O 1 2 I P E F K B A H

c) Gọi giao điểm thứ hai giữa IB và (O2) là H.

Xét đường tròn (O1): Đường kính IE => Các góc ^IHE, ^EAI chắn nửa đường tròn

=> ^IHE = ^EAI = 900 => ^IHE = ^EAI = ^AIH = 900 => Tứ giác AIHE là hình chữ nhật => IA = HE (1)

Xét \(\Delta\)EHK và \(\Delta\)FBK có: ^EHK = ^FBK (=900), KE = KF, ^HKE = ^BKF (Đối đỉnh)

=> \(\Delta\)EHK = \(\Delta\)FBK (Ch.gn) => HE = BF (Cạnh tương ứng) (2)

Từ (1;(2) suy ra: IA = BF (đpcm).