Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)
\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)
\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)
\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)
2.
Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A
\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)
b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua
\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)
\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
Vậy d luôn đi qua \(B\left(-1;5\right)\)
Hoành độ giao điểm là nghiệm của phương trình:
x^2 = 2x - n + 3
<=> x^2 - 2x + n - 3 = 0 (1)
có: \(\Delta'=1^2-\left(n-3\right)=4-n\)
(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)
Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)
Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+x_1x_2=16\)
<=> \(2x_1-n+3-2x_2+n-3=16\)
<=> \(x_1-x_2=8\)(4)
Từ (3); (4) => x1 = 5; x2 = -3
Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12
Xét phương trình hoành độ giao điểm:
\(2x^2=2mx-m-2x+2\)
\(\Leftrightarrow2x^2-2\left(m-1\right)x+m-2=0\left(1\right)\)
Xét pt (1) có:
\(\Delta=4\left(m-1\right)^2-4.2.\left(m-2\right)\)
= \(4m^2-16m+20\)
= \(\left(2m-4\right)^2+4\) >0 với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi m
\(\Rightarrow\) 2 đường thẳng luôn cắt nhau tại 2 điểm phân biệt
Áp dụng công thức nghiệm ta có:
\(x_A=\dfrac{2m-2+\sqrt{\Delta}}{4}\Rightarrow y_A=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{16}\)
\(x_B=\dfrac{2m-2-\sqrt{\Delta}}{4}\Rightarrow y_B=\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}\)
Theo đề bài ta có:
\(x_A-y_B=y_A-x_B-1\)
\(\Leftrightarrow\dfrac{2m-2+\sqrt{\Delta}}{4}-\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{4}-\dfrac{2m-2-\sqrt{\Delta}}{4}-1\)
\(\Leftrightarrow4\left(2m-2+\sqrt{\Delta}\right)-2\left(2m-2-\sqrt{\Delta}\right)^2=2\left(2m-2+\sqrt{\Delta}\right)^2-4\left(2m-2-\sqrt{\Delta}\right)-16\)\(\Leftrightarrow48m-16-16m^2-4\Delta=0\)
\(\Leftrightarrow48m-16-16m^2-4\left(4m^2-16m+20\right)=0\)
\(\Leftrightarrow-32m^2+112m-96=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy để 2 đường thẳng cắt nhau tại 2 điểm \(A_{\left(x_A;y_A\right)};B_{\left(x_B;y_B\right)}\) thỏa mãn
\(x_A-y_B=y_A-x_B-1\) thì \(m=2\) hoặc \(m=\dfrac{3}{2}\)
Tọa độ giao của (d1) và (d2) là:
3x=x+2 và y=x+2
=>x=1 và y=3
Thay x=1 và y=3vào (d3), ta được:
m-3+2m+1=3
=>3m-2=3
=>3m=5
=>m=5/3