K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2022

Tọa độ giao của (d1) và (d2) là:

3x=x+2 và y=x+2

=>x=1 và y=3

Thay x=1 và y=3vào (d3), ta được:

m-3+2m+1=3

=>3m-2=3

=>3m=5

=>m=5/3

NV
6 tháng 7 2020

1.

\(\Delta=m^2-4\left(2m-5\right)=\left(m-4\right)^2+4>0;\forall m\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-5\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow m\ne-2\)

\(A=\frac{x_1x_2}{x_1+x_2+2}=\frac{2m-5}{m+2}=2-\frac{9}{m+2}\)

\(A\in Z\Rightarrow\frac{9}{m+2}\in Z\Rightarrow m+2=Ư\left(9\right)\)

\(\Rightarrow m+2=\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow m=\left\{-11;-5;-3;-1;1;7\right\}\)

2.

Hệ pt tọa độ giao điểm A của d1 và d2: \(\left\{{}\begin{matrix}x+y=2\\-2x+y=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

Để 3 đường thẳng đồng quy \(\Leftrightarrow\) d qua A

\(\Leftrightarrow1=\left(m-2\right).1+m+3\Rightarrow2m=0\Rightarrow m=0\)

b/ Gọi \(B\left(x;y\right)\) là điểm cố định mà d luôn đi qua

\(\Leftrightarrow y=\left(m-2\right)x+m+3\) ; \(\forall m\)

\(\Leftrightarrow m\left(x+1\right)+\left(-2x-y+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\-2x-y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

Vậy d luôn đi qua \(B\left(-1;5\right)\)

27 tháng 6 2020

Bài 2 hình như sai đề thì phải

27 tháng 6 2020

Hoành độ giao điểm là nghiệm của phương trình: 

x^2 = 2x - n + 3 

<=> x^2 - 2x + n - 3 = 0  (1)

có: \(\Delta'=1^2-\left(n-3\right)=4-n\)

(P) cắt (d) <=> (1) có nghiệm <=> \(\Delta'\ge0\Leftrightarrow n\le4\)(@)

Áp dụng định lí viet ta có: x1 . x2 = n - 2 (2) ; x1 + x2 = 2(3)

Theo bài ra ta có: \(x_1^2-2x_2+x_1x_2=16\)

<=> \(2x_1-n+3-2x_2+x_1x_2=16\)

<=> \(2x_1-n+3-2x_2+n-3=16\)

<=> \(x_1-x_2=8\)(4) 

Từ (3); (4) => x1 = 5; x2 = -3

Thế vào (2) ta có: 5.(-3) = n - 3 <=> n = -12 

27 tháng 6 2020

Thiếu:

n = - 12 ( thỏa mãn điều kiện @) 

Vậy n = - 12.

18 tháng 5 2017

Xét phương trình hoành độ giao điểm:

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-2\left(m-1\right)x+m-2=0\left(1\right)\)

Xét pt (1) có:

\(\Delta=4\left(m-1\right)^2-4.2.\left(m-2\right)\)

= \(4m^2-16m+20\)

= \(\left(2m-4\right)^2+4\) >0 với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi m

\(\Rightarrow\) 2 đường thẳng luôn cắt nhau tại 2 điểm phân biệt

Áp dụng công thức nghiệm ta có:

\(x_A=\dfrac{2m-2+\sqrt{\Delta}}{4}\Rightarrow y_A=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{16}\)

\(x_B=\dfrac{2m-2-\sqrt{\Delta}}{4}\Rightarrow y_B=\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}\)

Theo đề bài ta có:

\(x_A-y_B=y_A-x_B-1\)

\(\Leftrightarrow\dfrac{2m-2+\sqrt{\Delta}}{4}-\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{4}-\dfrac{2m-2-\sqrt{\Delta}}{4}-1\)

\(\Leftrightarrow4\left(2m-2+\sqrt{\Delta}\right)-2\left(2m-2-\sqrt{\Delta}\right)^2=2\left(2m-2+\sqrt{\Delta}\right)^2-4\left(2m-2-\sqrt{\Delta}\right)-16\)\(\Leftrightarrow48m-16-16m^2-4\Delta=0\)

\(\Leftrightarrow48m-16-16m^2-4\left(4m^2-16m+20\right)=0\)

\(\Leftrightarrow-32m^2+112m-96=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy để 2 đường thẳng cắt nhau tại 2 điểm \(A_{\left(x_A;y_A\right)};B_{\left(x_B;y_B\right)}\) thỏa mãn

\(x_A-y_B=y_A-x_B-1\) thì \(m=2\) hoặc \(m=\dfrac{3}{2}\)