Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý hàm sin ta có:
\(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\) = \(\dfrac{Á_2}{sina}\) = \(\dfrac{A_3}{sinb}\)
⇒ A2 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\)sina
Để A2 đạt giá trị lớn nhất, góc a bằng 90o, suy ra góc b bằng 60o
nên A1 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\).sin60 = \(\dfrac{7,5}{\dfrac{sin\pi}{3}}\)
\(\lambda = v/f = 0.8/100 = 0.008m = 0.8cm.\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{0}{\lambda}-\frac{0}{2\pi})| = |2a| = 2a.\)
\(u_M = A_M\cos(2\pi ft - \pi\frac{d_2+d_1}{\lambda}+\frac{\varphi_1+\varphi_2}{2})\\= A_M\cos(200\pi t - \pi\frac{8+8}{0.8}+\frac{0}{2})= 2a\cos(200\pi t - \pi\frac{8+8}{0.8})= 2a\cos(200\pi t-20\pi)=2a\cos(200\pi t)\)
Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:
A = 2,3 cm và φ = 0,73π
Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).
Ai trả lời giùm em với