Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-thay x=-1 vào đa thức (1) trên ta có:P(-1)=-1+3+m^2 (1)
-thay x=2 vào đa thức (2) ta có:Q(2)=4+6m+4+m^2
=8+6m +m^2(2)
Từ (1) và (2) =>1+3+m^2=8+6m+m^2
=>1+3m=8+6m
=>-7=3m
=>m=-7/3
Bài 2:
\(H+3x+5x^2-2y^2-4y-3=4x^2y^2+2x+2y-x^2-2y^2\)
\(\Leftrightarrow H+3x+5x^2-4y-3=4x^2y^2+2x+2y-x^2\)
\(\Leftrightarrow H=4x^2y^2-x+6y-6x^2+3\)
Câu 1: \(\dfrac{\left(a+b\right)^2}{a-b}\)
Câu 2:
\(H+\left(3x-2y^2+5x^2-4y-3\right)=\left(2xy\right)^2+2x+2y-x^2-2y^2\)
\(\Rightarrow H=\left(4x^2y^2+2x+2y-x^2-2y^2\right)-\left(3x-2y^2+5x^2-4y-3\right)\)
\(\Rightarrow H=4x^2y^2+2x+2y-x^2-2y^2-3x+2y^2-5x^2+4y-3\)
\(\Rightarrow H=4x^2y^2+\left(2x-3x\right)+\left(2y+4y\right)+\left(-x^2-5x^2\right)+\left(-2y^2+2y^2\right)-3\)
\(\Rightarrow H=4x^2y^2-x+6y-6x^2-3\)
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
Cho P(x) =x3 -3mx +m2
Q(x)= x2 +(3m +2) x+m2
Tìm giá trị của m sao cho P(-1) = Q(2)
P(-1) = (-1)3 - 3m.(-1) + m2 = -1 + 3m + m2
Q(2) = 22 + ( 3.m + 2) . 2 + m2 = 8 + 6m + m2
P(-1) = Q(2) \(\Rightarrow\) -1 + 3m + m2 = 8 + 6m + m2
\(\Rightarrow\) -1 + 3m = 8 + 6m + m2 - m2
\(\Rightarrow\) -1 + 3m = 8 + 6m
\(\Rightarrow\) 3m - 6m = 1+8
=> -3m = 9
=> m = -3
Vậy m= -3 thì P(-1) = Q(2)
a: f(-1)=g(2)
nên \(-1-m-1+2m+m^2-1=12m+13m+m^2-3\)
\(\Leftrightarrow25m-3=m-3\)
=>m=0
b: \(s\left(x\right)=f\left(x\right)+g\left(x\right)=x^3+x^2\left(3m-m-1\right)+x\left(-2m+\dfrac{13}{2}m\right)+m^2-1+m^2-3\)
\(=x^3+\left(2m-1\right)x^2+\dfrac{9}{2}mx+2m^2-4\)
Vì m=1 nên \(s\left(x\right)=x^3+x^2+\dfrac{9}{2}x-2\)
Khi x=1 thì \(s=1+1+\dfrac{9}{2}-2=\dfrac{9}{2}\)
Khi x=-1 thì \(s=-1+1-\dfrac{9}{2}-2=-\dfrac{13}{2}\)
\(H\left(-1\right)=K\left(2\right)\Rightarrow-1+3m+m^2=4+2\left(3m+2\right)+m^2\)
\(\Leftrightarrow-1+3m=8+6m\Leftrightarrow3m=-9\Leftrightarrow m=-3\)