Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abc.theo bài ra ta có:
cab=765+abc
=>100c+ab=756+10.ab+c
=>99c=9ab+756
=>11c=ab+84
ab+84<100+84=184
=>c<17
vì c có 1 chữ số=>c<10
ab+84=11c=>11c>84
=>c>7
=>c=8;9
xét c=8=>ab=4(loại)
xét c=9=>ab=15
vậy abc=159
1) Gọi số đó là abc9. Ta có: 9abc - 2889 = abc9
_ Vì 9 + 0 = 9 nên c = 0
Ta có phép tính:
9ab0
- 2889
ab19
=> b = 19
Sau đó tự làm tiếp! Không chắc đâu nhá!
VG ơi là VG ! Bài cô Thủy ra à !Thôi thì bạn k mk đi, mình gửi kết quả và cách làm cho.
ta có : abc9 + 2889 = 9abc
abc x 10 + 9 + 2889 = 9000 + abc
abc x ( 10 - 1 ) + 2898 = 9000 + abc - abc
abc x 9 + 2898 = 9000
abc x 9 = 9000 - 2898
abc x 9 = 6102
=> abc = 6102 : 9
=>abc = 678
vậy số cần tìm là 678 .
Gọi số đã cho là \(\overline{abc9}\)( \(0< a\le9\); \(0\le b,c\le9\))
Nếu chuyển chữ số hàng đơn vị lên đầu ta được: \(\overline{9abc}\)
Ta có: \(\overline{9abc}-\overline{abc9}=2889\)
\(\Rightarrow9000+100a+10b+c-\left(1000a+100b+10c+9\right)=2889\)
\(\Rightarrow9000+100a+10b+c-1000a-100b-10c-9=2889\)
\(\Rightarrow1000a+100b+10c-100a-10b-c=9000-9-2889\)
\(\Rightarrow900a+90b+9c=6102\)\(\Rightarrow100a+10b+c=678\)
hay \(\overline{abc}=678\)
Vậy số đã cho là \(6789\)
a,
Gọi số cần tìm là ab
=> ab = 3b
=> 10a + b = 3b
=> 10a = 2b
=> 5a = b
=> b \(⋮\)5 ; b là chữ số nên có 1 chữ số
=> b = 5; a = 1
Vậy ab = 15
b,
CÁCH 1:
Gọi số cần tìm là ab
=> ab3 = ab + 93
=> 100a + 10b + 3 = 10a + b + 93
=> 90a + 9b = 90
Mà a,b có 1 chữ số; a\(\ne0\)
Nếu a > 1 => 90a + 9b = 180 + 9b > 90 [loại]
=> a = 1 => b = 0
Vậy ab = 10
CÁCH 2:
Khi ta thêm số 3 vào bên phải một số thì số đó tăng 9 lần và 3 đơn vị.
Vậy số ban đầu là:
[93 - 3]: 9 = 10
c,
CÁCH 1:
Gọi số cần tìm là ab
=> ab4 = ab + 112
=> 100a + 10b + 4 = 10a + b + 112
=> 90a + 9b = 108
Mà a,b có 1 chữ số; a\(\ne0\)
=> nếu a > 1 => 90a + 9b = 180 + 9b > 108 [loại]
=> a = 1 => b = [108 - 90.1]: 9 = 2
Vậy ab = 12
CÁCH 2 TƯƠNG TỰ BÀI TRÊN
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
bài 2
Gọi số phải tìm là abc
cba - abc = 99 (c -a) = 792
c -a = 8
Vì a lớn hơn 0 nên a= 1, c =9 ,b = 4
Số phải tìm là 149