Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 9040 chia cho 1 số ta được thương là 472 nên
Số đó là: 9040 : 472 = \(\dfrac{1130}{59}\) (không phải là số tự nhiên)
Nên không có số nào thỏa mãn đề bài.
2, ƯCLN(a; b) = 9; a + b = 108
Vì ƯCLN(a; b) = 9 ⇒ a =9.d; b = 9.k (d; k) = 1; d; k \(\in\) N*
Theo bài ra ta có: 9d + 9k = 108
9.(d + k) = 108
d + k = 108 : 9
d + k = 12
(d; k) = (1; 11); (2; 10); (3; 9); (4; 8); (5; 7); (6; 6); (7; 5); (8; 4); (9; 3); (10; 2); (11; 1)
Vì (d; k) = (1; 11); (5; 7); (7; 5); (11; 1)
(a; b) = (9; 99); (45; 63); (63; 45); (99; 9)
Bài 1:
Gọi số phải tìm là a ( a ϵ N*)
Ta có: a+42 chia hết cho 130 và 150
=> a + 42 ϵ BC(130;135)
=> a= 1908; 3858; 5808; 7758; 9708
Bài 1(phần a):
Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\Rightarrow\frac{x.y}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow\frac{xy-27}{9y}=\frac{1}{18}\)
=> 18.(xy-27) = 9y => 2(xy-27) = y=> 2xy -54 -y = 0 => 2xy - y = 54
=> (2x-1).y = 54 => 2x-1 ; y là ước của 54
Ư(54) = {54;1; 27;2; 9; 6; 3; 18;}
Nhận thấy 2x -1 là số lẻ nên ta chỉ cần chọn các trường hợp:
Nếu 2x -1 = 1 => x = 1 => y = 54
Nếu 2x -1 = 27 => x = 14 => y = 2
Nếu 2x -1 = 9 => x = 5 => y = 6
Nếu 2x-1 = 3 => x= 2 => y = 18
Vậy....