Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình thang cân nên \(\widehat A = \widehat B = {80^o}\)
Khi đó: \(\widehat C = \widehat D = \frac{{{{360}^o} - \widehat B - \widehat A}}{2} = \frac{{{{360}^o} - {{80}^o} - {{80}^o}}}{2} = {100^o}\left( {\widehat A + \widehat B + \widehat C + \widehat D = {{360}^o}} \right)\)
Chọn đáp án C
Bài 1:
C1 là góc ngoài tại đỉnh C của tam giác ABC
=> C1 = 1800 - C
=> C = 1800 - C1 = 1800 - 1300 = 500
Tứ giác ABCD có:
A + B + C + D = 3600
A + 800 + 500 + 1200 = 3600
A = 3600 - 2500
A = 1100
Bài 2:
\(1,5=\frac{3}{2}\)
AB // CD
=> A + D = 1800
A = 1800 : (3 + 2) . 3 = 1080
D = 1800 - 1080 = 720
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
B = (1800 + 240) : 2 = 1020
C = 1800 - 1020 = 780
a) MN là đường trung bình của tam giác HDC nên MN = \(\frac{1}{2}CD\)và \(MN//CD\)
Mà \(AB//CD\)và AB =\(\frac{1}{2}CD\)nên \(AB//MN\)và AB = MN
Suy ra ABMN là hình bình hành
b) Vì \(MN//CD\)và \(AD\perp CD\)nên \(AD\perp MN\)
Suy ra N là trực tâm của tam giác AMD
d) CD = 16 nên AB = 8
Suy ra \(S_{ABCD}=\frac{\left(16+8\right).6}{2}=72\left(cm^2\right)\)
c) \(\widehat{NAB}=\widehat{NMB}\)(hai góc đối)
\(\Rightarrow NBM+NDM=NAB+DAC=90^0=BMD\)
a) từ I kẻ HI//AB//DC
=> GÓC HID= GÓC IDC ( SLT)
MÀ IDC=IDH => GÓC HID=GÓC IDH => TAM GIÁC HID CÂN TẠI H => HD=HI
TƯƠNG TỰ CHỨNG MINH TAM GIÁC HIA CÂN TẠI H => HI=HA
=> HA=HD => H LÀ TRUNG ĐIỂM AD
MÀ HI//AC//CD => I PHẢI LÀ TRUNG ĐIỂM BC
=> HI LÀ ĐTB CỦA HÌNH THANG
=> HI= (AB+CD)/2 (1)
MẶT KHÁC TRONG TAM GIÁC IAD:
GÓC ADI + GÓC IDA=1/2 GÓC A +1/2 GÓC D=1/2 (A+D)=1/2 180=90 ( ABCD LÀ HÌNH THANG => A+D=180)
=> TAM GIÁC ADI VUÔNG TẠI I. HI LÀ TRUNG TUYẾN => HI=AD/2 (2)
TỪ (1;2) => ĐPCM
B) GỌI PG GÓC A CẮT PG GÓC D TẠI I
TỪ I TA KẺ HI//AB//CD (H THUỘC AD)
=> .... ( ĐẾN ĐÂY C/M NHƯ TRÊN ĐỂ => H LÀ TĐ CỦA AD, TAM GIÁC ADI VUÔNG)
=> HI= AD/2.
TA CÓ: AD=AB+CD => HI=AB+CD/2 HAY HI= NỬA TỔNG 2 ĐÁY
H LÀ TRUNG ĐIỂM AD, HI//AB//CD. HI = NỬA TỔNG HAI ĐÁY => I PHẢI LÀ TRUNG ĐIỂM BC => AI CẮT DI TẠI I THUỘC BC
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)
1, C
2.B
Câu 1:C
Câu 2:B