K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

ta có A(x)=x2-4=0

 => x2 = 4

=> x= -2 hoặc x=2

do đó đa thức trên có tập nghiệm là x = ( 2 ; -2 )

22 tháng 8 2019

a) ta có: 

+) x = 5 => f(5) = 52 - 6.5 + 5 = 25 - 30 + 5 = 0

                        => x = 5 là nghiệm của f(x)

+) x = 3 => f(3) = 32 - 6.3 + 5 = 9 - 18 + 5 = -4

                => x = 3 ko là nghiệm của f(x)

+) x = 1 =. f(1) = 12 - 6.1 + 5 = 1 - 6 + 5 = 0

                => x = 1 là nghiệm của f(x)

+) x = 0 => f(0) = 02 - 6.0 + 5 = 5

          => x = 5 ko là nghiệm của f(x)

b) Tập hợp S = {5; -1} 

c) Ta có : x4 \(\ge\)0 ; 1/5x2 \(\ge\)0 ; 2012 > 0

=> x4 + 1/5x2 + 2012 > 0

=> đa thức h(x) ko có nghiệm

22 tháng 8 2019

\(a.\)Thay lần lượt các giá trị của \(x\)trong tập hợp số \(\left\{5;3;-1;0\right\}\)vào đa thức \(f\left(x\right)\)như bn Edogawa Conan nha !

Ta thấy \(f\left(5\right)=5^2-6.5+5=0\)nên \(x=5\)là 1 ngiệm của \(f\left(x\right)\)

\(b.\)Ta có: \(f\left(x\right)=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

                             \(f\left(x\right)=0\Leftrightarrow\cdot x-1\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)

\(c.\)Xét đa thức \(h\left(x\right)=x^4+\frac{1}{5}x^2+2012\)

Do \(x^4\ge0\)và \(\frac{1}{5}x^2\ge0\)với mọi \(x\)nên \(h\left(x\right)>0\)với mọi \(x\)

Vậy \(h\left(x\right)\ne0\)với mọi \(x\)Do đó đa thức \(h\left(x\right)\)không có nghiệm

28 tháng 7 2017

a) Để đa thức f(x) có nghiệm là 1 và 3 thì \(1^3-a.1^2-9.1+b=3^3-a.3^2-9.3+b=0\)

=> \(1-a-9+b=27-9a-27+b\)

=> \(-a+9a+b-b=8\Rightarrow8a=8\Rightarrow a=1\)

Từ đó tính được b = 9.

b) Thay kết quả câu a vào f(x) ta được f(x) = \(x^3-x^2-9x+9\)

Đa thức f(x) có nghiệm khi:

\(x^3-x^2-9x+9=x^2\left(x-1\right)-9\left(x-1\right)\)

\(=\left(x^2-9\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x^2-9=0\\x-1=0\end{cases}}\)

Từ đó tìm được tập nghiệm của f(x) là {-3;1;3}.

1 tháng 6 2020

a) P(x) = ax2 - x + 5 

Nghiệm của đa thức = 1

=> P(1) = a . 12 - 1 + 5 = 0

=> a . 1 - 1 + 5 = 0

=> a + 4 = 0

=> a = -4

b) P(x) = 2x2 - ax + 1

Nghiệm của đa thức = -2

=> P(-2) = 2.(-2)2 - a.(-2) + 1 = 0

=> 8 + 2a + 1 = 0

=> 9 + 2a = 0

=> 2a = -9

=> a = -9/2

c) (3x + 2) - 2(x+1) = 4(x+1)

=> 3x + 2 - 2x - 2 = 4x + 4

=> 1x + 0 = 4x + 4

=> 1x = 4x + 4

=> 1x - 4x = 4

=> -3x = 4

=> x = -4/3

a, Ta có : 

\(P\left(1\right)=a1^2-1+5=0\Leftrightarrow a+4=0\Leftrightarrow a=-4\)

b, Ta có : 

\(P\left(-2\right)=2\left(-2\right)^2-a\left(-2\right)+1=0\Leftrightarrow2.4+2a+1=9+2a=0\)

\(2a=-9\Leftrightarrow a=-\frac{9}{2}\)

c, \(\left(3x+2\right)-2\left(x+1\right)=4\left(x+1\right)\)

\(\Leftrightarrow3x+2-2x-2=4x+4\)

\(\Leftrightarrow x=4x+4\Leftrightarrow x-4x=4\Leftrightarrow-3x=4\Leftrightarrow x=-\frac{4}{3}\)

23 tháng 4 2019

Đáp án: C

#Hk_tốt

#Ngọc's_Ken'z

23 tháng 4 2019

thank ngọc ken'z

a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)

=>x=1 là nghiệm của P(x)

\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)

=>x=-2 là nghiệm của P(x)

b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)

=>x=1 là nghiệm của P(x)

29 tháng 4 2015

1) Ta có: 2x2 + 2x + 1 = 0

<=> x2 + (x2 + 2x + 1) = 0

<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0       (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)

x = x+ 1 => 0 = 1 Vô lý

Vậy đa thức đã cho ko có nghiệm

2) a) x3-2x2-5x+6  = 0

=> x3 - x2 - x2 + x - 6x + 6 = 0

=> ( x3 - x2) - (x2 - x)  - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0

=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0

=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0 

=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0

=> x = 1 hoặc x = -2 hoặc x = 3

Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3

b) x3 + 3x2 - 6x - 8 = 0

=>  x3 +  x2 + 2x2 + 2x - 8x - 8 = 0

=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0

=> (x+ 1). [x2 + 2x - 8] = 0

=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0

=> (x +1). (x -2). (x+4) = 0 

=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0

=> x = -1 hoặc x = 2 hoặc x = -4

Đa thức đã cho có 3 nghiệm là -1; 2; -4

 

6 tháng 12 2016

x+(-2x)=(-70+(-3)

18 tháng 4 2017

a            x+3=0

             x=-3              vậy nghiệm đa thức f(x)=x+3 là -3

b       

18 tháng 4 2017

phần a bạn Nguyễn xuân khải làm đúng rồi nên mình chỉ làm phần b

b)h(2)=2*2^2-7m*2+4=8-14m+4=0

=>4-14m=0

=>14m=4

=>m=\(\frac{2}{7}\)

Vậy m=\(\frac{2}{7}\)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe