K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A 

Xét ΔBAC vuông tại A có

\(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}=36^052'\)

=>\(\widehat{B}=53^08'\)

11 tháng 12 2023

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)

nên \(\widehat{B}\simeq36^052'\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-36^052'=53^08'\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot7,5=4,5\cdot6=27\)

=>AH=27/7,5=3,6(cm)

1 tháng 10 2023

a) Ta có:

\(\widehat{B}=180^o-90^o-52^o=28^o\) 

\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)

\(\Rightarrow AB\approx11,55\left(cm\right)\)

b) Áp dụng Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\) 

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)

\(\Rightarrow\widehat{B}\approx58^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)

c) Ta có:

\(\widehat{C}=180^o-90^o-35^o=55^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)

\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)

1 tháng 10 2023

a) \(\widehat{B}=180^o-90^o-52^o=38^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\) 

b) \(\widehat{C}=180^o-90^o-58^o=32^o\)

1 tháng 6 2017

bài trong sbt có giải á bạn

15 tháng 7 2017

a) Trong tam giác vuông BCH, ta có:

CH=BC.sin⁡B^=12.sin⁡60≈10,392 (cm)

Trong tam giác vuông ABC, ta có:

\(A\)=180−(60+40)=80

Trong tam giác vuông ACH, ta có:

\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)

b) Kẻ AK⊥BCAK⊥BC

Trong tam giác vuông ACK, ta có:

AK=AC.sin⁡C≈10,552.sin⁡40=6,783 (cm)

Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)



29 tháng 10 2021

Ta có \(\sin B=\sin48^0=\dfrac{AC}{BC}\approx0,74\Leftrightarrow BC\approx\dfrac{12}{0,74}\approx16,22\left(cm\right)\)

Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}\approx10,91\left(cm\right)\)

\(\widehat{C}=90^0-\widehat{B}=42^0\)