Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)
Xét ΔAHB vuông tại H có
\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)
nên \(\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
A B C 4 9
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
a) Áp dụng HTL :
\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{3}{5}\)
nên \(\widehat{B}\simeq36^052'\)
Ta có: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{C}=90^0-36^052'=53^08'\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot7,5=4,5\cdot6=27\)
=>AH=27/7,5=3,6(cm)