K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2019

\(y=\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{x^2+8}=t\Rightarrow t\ge2\)

Xét hàm \(f\left(t\right)=t^2-3t+1\) trên \([2;+\infty)\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{3}{2}< 2\Rightarrow f\left(t\right)\) đồng biến trên \([2;+\infty)\)

\(\Rightarrow f\left(t\right)_{min}=f\left(2\right)=-1\)

2/ \(a=-1< 0\) ; \(-\frac{b}{2a}=m-1\Rightarrow\) hàm số nghịch biến trên \(\left(m-1;+\infty\right)\)

Để hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow m-1\le2\Rightarrow m\le3\)

3/ \(-\frac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=0\) ; \(f\left(2\right)=-4\) ; \(f\left(4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-4\\M=0\end{matrix}\right.\)

4/ \(a=-1< 0\) ; \(-\frac{b}{2a}=\left|m-1\right|\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(\left|m-1\right|;+\infty\right)\)

Đề hàm số nghịch biến trên \(\left(2;+\infty\right)\Leftrightarrow\left|m-1\right|\le2\)

\(\Leftrightarrow-2\le m-1\le2\Rightarrow-1\le m\le3\)

24 tháng 10 2019

cảm ơn bạn nhiều nhé

10 tháng 1 2021

\(y=\left(m-1\right)x^2-2mx+m+2\)(1)

+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :

(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)

=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)

+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai

(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên

\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)

\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)

Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)

NV
24 tháng 10 2019

Câu 1: Thay kí hiệu tham số là m cho đỡ nhầm lẫn với hệ số a;b;c của hàm

\(f\left(x\right)=4x^2-\left(4m+3\right)x+m^2+2=0\)

\(a=4>0\) ; \(-\frac{b}{2a}=\frac{4m+3}{8}\)

Hàm đồng biến khi \(x>\frac{4m+3}{8}\) và nghịch biến khi \(x< \frac{4m+3}{8}\)

- TH1: Nếu \(\frac{4m+3}{8}\le0\Leftrightarrow m\le-\frac{3}{4}\Rightarrow f\left(x\right)\) đồng biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2+2=3\Rightarrow\left[{}\begin{matrix}m=1>-\frac{3}{4}\left(l\right)\\m=-1\end{matrix}\right.\)

- TH2: Nếu \(\frac{4m+3}{8}\ge2\Leftrightarrow m\ge\frac{13}{4}\Rightarrow f\left(x\right)\) nghịch biến trên \(\left[0;2\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(2\right)=m^2-8m+12=3\)

\(\Leftrightarrow m^2-8m+9=0\Rightarrow\left[{}\begin{matrix}m=4+\sqrt{7}\\m=4-\sqrt{7}< \frac{13}{4}\left(l\right)\end{matrix}\right.\)

- TH3: \(0< \frac{4m+3}{8}< 2\Rightarrow0< m< \frac{14}{3}\)

\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{4m+3}{8}\right)=\frac{23-24m}{16}=2\Rightarrow m=-\frac{3}{8}\left(l\right)\)

NV
25 tháng 10 2019

Câu 2:

Ta có \(a=-1< 0\) ; \(-\frac{b}{2a}=1\in\left[-1;2\right]\)

\(\Rightarrow f\left(x\right)_{max}=f\left(1\right)=m-3\)

\(\Rightarrow m-3=3\Rightarrow m=6\)

Câu 3:

\(a=1>0\Rightarrow f\left(x\right)_{min}=f\left(-\frac{b}{2a}\right)=f\left(-m\right)\)

\(\Rightarrow-m^2+5=1\Rightarrow m^2=4\Rightarrow m=\pm2\)

Câu 4:

\(a=m>0\); \(-\frac{b}{2a}=\frac{2}{m}\) \(\Rightarrow\) hàm số nghịch biến trên \(\left(-\infty;\frac{2}{m}\right)\)

Để hàm số nghịch biến trên \(\left(-1;2\right)\)

\(\Leftrightarrow2\le\frac{2}{m}\Leftrightarrow m\le1\Rightarrow m=1\)

NM
8 tháng 12 2020

đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh

hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)

dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.

thế nên bài này sai ngay từ đề bài rồi nhé

hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên

11 tháng 1 2021

y = (x² - 1)(x + 3)(x + 5)

= [(x - 1)(x + 5)].[(x + 1)(x + 3)]

= (x² + 4x - 5)(x² + 4x + 3)

= [x² + 4x - 1) - 4].[(x² + 4x - 1) + 4]

= (x² + 4x - 1)² - 16 ≥ - 16

- Khi x = 0 ⇒ y = - 15

- Khi x = 1 ⇒ y = 0

- Khi x² + 4x - 1 = 0 ⇔ x = √5 - 2 ( loại giá trị x = - √5 - 2 < 0) ⇒ y = - 16

Vậy trên đoạn [0; 1] thì :

GTNN của y = - 16 khi x = √5 - 2

GTLN của y = 0 khi x = 1