K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625 b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9) Câu 2 : Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm Câu 3 : a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 ) và N = 1/2 +...
Đọc tiếp

Câu 1 :

a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625

b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9)

Câu 2 :

Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm

Câu 3 :

a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 )

và N = 1/2 + 1/3 + ... + 1/100 + 1/101 . Tính M / N

Câu 4 :

a) so sánh A và B biết : A = ( 2011) / (căn 2012 ) + ( 2012 ) / (căn 2011) và B = căn 2011 + căn 2012

b) Có thể tìm được một số tự nhiên là lũy thừa của 9 có tận cùng là 0001

Câu 5 : Cho đoạn thẳng AB , điểm C nằm giữa A và B . Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC . Gọi M , N lần lượt là trung điểm của AE và BD . Chứng minh :

a) AE = BD

b) Tam giác MNC đều

1
25 tháng 3 2017

Câu 2:

+Nếu có 1 số dương và 12 số còn lại là âm thì tích của số dương đó với 2 số âm bất kì trong 12 số âm còn lại sẽ là số dương(mâu thuẫn với đề bài)

+Nếu có 2 số dương và 11 số còn lại là âm thì tích của 1 trong 2 số dương đó với 2 số âm bất kì trong 11 số âm còn lại sẽ là số dương(mâu thuẫn với đề bài)

+Nếu có từ 3 số dương trở lên thì tích 3 số dương đó sẽ là số dương(mâu thuẫn với đề bài)

Vậy cả 13 số đã cho đều là số âm

Câu 1 : a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625 b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9) Câu 2 : Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm Câu 3 : a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 ) và N = 1/2 +...
Đọc tiếp

Câu 1 :

a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625

b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9)

Câu 2 :

Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm

Câu 3 :

a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 )

và N = 1/2 + 1/3 + ... + 1/100 + 1/101 . Tính M / N

Câu 4 :

a) so sánh A và B biết : A = ( 2011) / (căn 2012 ) + ( 2012 ) / (căn 2011) và B = căn 2011 + căn 2012

b) Có thể tìm được một số tự nhiên là lũy thừa của 9 có tận cùng là 0001

Câu 5 : Cho đoạn thẳng AB , điểm C nằm giữa A và B . Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC . Gọi M , N lần lượt là trung điểm của AE và BD . Chứng minh :

a) AE = BD

b) Tam giác MNC đều

0
Câu 1 : a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625 b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9) Câu 2 : Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm Câu 3 : a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 ) và N =...
Đọc tiếp

Câu 1 :

a ) Tìm các số hữu tỉ x ; y ; z biết xy = 2/3 ; yz = 0,6 ; zx = 0,625

b) tính tổng A = 9 + 99 + 999 + ... + 999...9(2011 chữ số 9)

Câu 2 :

Cho 13 số hữu tỉ , trong đó tích của 3 số bất kì nào cũng là một số âm . Chứng minh rằng 13 số đã cho đều là số âm

Câu 3 :

a) Cho M = (1002 +12 ) / ( 100 . 1) + ( 992+ 22) / ( 99 . 2 ) + ( 982+ 32 ) / ( 98 . 3 )+ ...+ ( 522 + 492 ) / ( 52 . 49 ) + (512 + 502) / ( 51.50 )

và N = 1/2 + 1/3 + ... + 1/100 + 1/101 . Tính M / N

Câu 4 :

a) so sánh A và B biết : A = ( 2011) / (căn 2012 ) + ( 2012 ) / (căn 2011) và B = căn 2011 + căn 2012

b) Có thể tìm được một số tự nhiên là lũy thừa của 9 có tận cùng là 0001

Câu 5 : Cho đoạn thẳng AB , điểm C nằm giữa A và B . Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC . Gọi M , N lần lượt là trung điểm của AE và BD . Chứng minh :

a) AE = BD

b) Tam giác MNC đều

2
23 tháng 3 2017

hu hu help me khocroi

24 tháng 3 2017

Câu 1:

Ta có: \(\left\{{}\begin{matrix}xy=\dfrac{2}{3}\\yz=0,6\\zx=0,625\end{matrix}\right.\)\(\Rightarrow xyyzzx=\dfrac{2}{3}.0,6.0,625\)

\(\Rightarrow\left(xyz\right)^2=0,25\)

\(\Rightarrow xyz=\sqrt{0,25}=\pm0,5\)

\(\left\{{}\begin{matrix}xy=\dfrac{2}{3}\\yz=0,6\\zx=0,625\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=xyz\div xy\\x=xyz\div yz\\y=xyz\div zx\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\dfrac{\pm3}{4}\\x=\dfrac{\pm5}{6}\\y=\dfrac{\pm4}{5}\end{matrix}\right.\)

Vậy: \(\left\{{}\begin{matrix}x=\dfrac{\pm5}{6}\\y=\dfrac{\pm4}{5}\\z=\dfrac{\pm3}{4}\end{matrix}\right.\)

31 tháng 1 2018

Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

31 tháng 1 2018

Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

31 tháng 1 2018

Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

15 tháng 8 2024

Tham khảo ở đâu ạ? 

31 tháng 1 2018

a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)

Xét tam giác DCB và tam giác ACE có:

DC = AC (gt)

CB = CE (gt)

\(\widehat{ACE}=\widehat{DCB}\)  (cmt)

\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)

\(\Rightarrow DB=AE\)   (Hai cạnh tương ứng)

b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)

Do DB = AE nên ME = NB

Xét tam giác CME và tam giác CNB có:

ME = NB (cmt)

CE = CB (gt)

\(\widehat{MEC}=\widehat{NBC}\)  (cmt)

\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)

c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)

Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)

\(\Rightarrow\widehat{MCN}=60^o\)

Xét tam giác CMN có CM = CN nên nó là tam giác cân.

Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.

31 tháng 1 2018

Hình vẽ