K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

a.góc B = 180-40-70=70
suy ra góc B=góc C 
suy ra tam giác ABC cân tại A
nen AB=AC
ta có góc A<góc B nên BC<AC
vậy AB=AC>BC
b) tam giác ABC cân tại a (chứng minh trên)
suy ra AB=AC=7cm
 

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

19 tháng 12 2017

A B C M

a) Theo định lí Py-ta-go đảo ta có :

\(\Delta ABC\)có : AC2 + AB2 = BC2 ( 322 + 242 = 402 )

\(\Rightarrow\)\(\Delta ABC\)vuông tại A ( đpcm )

b)Áp dụng định lí Py-ta-go vào \(\Delta AMB\)có :

MB2 = AM2 + AB2 

\(\Rightarrow\)MB2 = 72 + 242 = 625 = 252

\(\Rightarrow\)MB = 25

ta có : M nằm giữa A và C ( vì M thuộc AC ) nên AM + MC = AC

hay  7 + MC = 32

\(\Rightarrow\)MC = 32 - 7 = 25

vì MC = MB nên \(\Delta BMC\)cân tại M

xét \(\Delta BMC\)cân tại M có : \(\widehat{C}=\widehat{MBC}\)

Mà \(\widehat{AMB}\)là góc ngoài của \(\Delta BMC\)nên \(\widehat{AMB}\)\(\widehat{C}+\widehat{MBC}\)hay \(\widehat{AMB}\)\(2\widehat{C}\)( đpcm )

19 tháng 12 2017

Tại sao \(\Delta AMB\)vuông?

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: MC=AC-AM=25cm

\(BM=\sqrt{7^2+24^2}=25\left(cm\right)\)

=>MC=BM

=>ΔBMC cân tại M

\(\Leftrightarrow\widehat{BMC}=180^0-2\cdot\widehat{C}\)

hay \(\widehat{AMB}=2\cdot\widehat{C}\)

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

9 tháng 12 2016

A B C M N O

Bài này mình thấy chứng minh phần b trước thì ra phần a luôn =)))

b)Tam giác ABC có 2 góc bằng nhau: \(\widehat{ABC}=\widehat{ACB}\) =>Tam giác ABC cân tại A => AB=AC (1)

Tia BM là tia phân giác của góc ABC => \(\widehat{ABM}=\widehat{BM}C=\frac{1}{2}.\widehat{ABC}\)

Tia CN là tia phân giác của góc ACB => \(\widehat{ACN}=\widehat{NCB}=\frac{1}{2}.\widehat{ACB}\)

\(\widehat{ABC}=\widehat{ACB}\) <=> \(\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.\widehat{ACB}\) => \(\widehat{ABM}\)\(=\widehat{ACN}\) (2)

Xét \(\Delta ABM\)\(\Delta ACN\) có:

  • \(\widehat{BAC}\) là góc chung
  • AB=AC (suy ra ở (1))
  • \(\widehat{ABM}\)\(=\widehat{ACN}\) (suy ra ở (2))
=>\(\Delta ABM\)=\(\Delta ACN\) (g.c.g) (đpcm)
a)Theo chứng minh phần b ta có:\(\Delta ABM\)=\(\Delta ACN\) => BM=CN (2 cạnh tương ứng)

19 tháng 11 2017

A B C D E F M K

a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:

AB=DE và AC=DF(gt)

\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai

=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)

b. vì 2 tam giác = nhau 

=> BC=EF(2 cạnh tương ứng)

Mà  M và K lần lượt là trung điểm của BC và EF.

=> CM=FK

c.Vì 2 tam giác ABC và DEF bằng nhau nên:

\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)

Xét \(\Delta ACM\)và \(\Delta DFK\)có:

AC=DF(gt)

\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)

CM=FK(ch/m trên)

=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)

=> AM =DK(2 cạnh tương ứng)

19 tháng 11 2017

đề có chút sai hay sao ý

B C A I M

a) Xét \(\Delta AIB\)và \(\Delta MIC\)có:

\(BI=CI\)(I là trung điểm của BC)

\(\widehat{AIB}=\widehat{MIC}\)(2 góc đối đỉnh)

\(AI=MI\left(gt\right)\)

Do đó: \(\Delta AIB=\Delta MIC\left(c.g.c\right)\)

b) Xét \(\Delta AIC\)và \(\Delta MIB\)có:

\(BI=CI\)(I là trung điểm của BC)

\(\widehat{AIC}=\widehat{MIB}\)(2 góc đối đỉnh)

\(AI=MI\left(gt\right)\)

Do đó: \(\Delta AIC=\Delta MIB\left(c.g.c\right)\)

\(\Rightarrow\widehat{IAC}=\widehat{IMB}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AC // BM (đpcm)