Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
a) Theo định lí Py-ta-go đảo ta có :
\(\Delta ABC\)có : AC2 + AB2 = BC2 ( 322 + 242 = 402 )
\(\Rightarrow\)\(\Delta ABC\)vuông tại A ( đpcm )
b)Áp dụng định lí Py-ta-go vào \(\Delta AMB\)có :
MB2 = AM2 + AB2
\(\Rightarrow\)MB2 = 72 + 242 = 625 = 252
\(\Rightarrow\)MB = 25
ta có : M nằm giữa A và C ( vì M thuộc AC ) nên AM + MC = AC
hay 7 + MC = 32
\(\Rightarrow\)MC = 32 - 7 = 25
vì MC = MB nên \(\Delta BMC\)cân tại M
xét \(\Delta BMC\)cân tại M có : \(\widehat{C}=\widehat{MBC}\)
Mà \(\widehat{AMB}\)là góc ngoài của \(\Delta BMC\)nên \(\widehat{AMB}\)= \(\widehat{C}+\widehat{MBC}\)hay \(\widehat{AMB}\)= \(2\widehat{C}\)( đpcm )
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: MC=AC-AM=25cm
\(BM=\sqrt{7^2+24^2}=25\left(cm\right)\)
=>MC=BM
=>ΔBMC cân tại M
\(\Leftrightarrow\widehat{BMC}=180^0-2\cdot\widehat{C}\)
hay \(\widehat{AMB}=2\cdot\widehat{C}\)
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
A B C M N O
Bài này mình thấy chứng minh phần b trước thì ra phần a luôn =)))
b)Tam giác ABC có 2 góc bằng nhau: \(\widehat{ABC}=\widehat{ACB}\) =>Tam giác ABC cân tại A => AB=AC (1)
Tia BM là tia phân giác của góc ABC => \(\widehat{ABM}=\widehat{BM}C=\frac{1}{2}.\widehat{ABC}\)
Tia CN là tia phân giác của góc ACB => \(\widehat{ACN}=\widehat{NCB}=\frac{1}{2}.\widehat{ACB}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) <=> \(\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.\widehat{ACB}\) => \(\widehat{ABM}\)\(=\widehat{ACN}\) (2)
Xét \(\Delta ABM\) và \(\Delta ACN\) có:
- \(\widehat{BAC}\) là góc chung
- AB=AC (suy ra ở (1))
- \(\widehat{ABM}\)\(=\widehat{ACN}\) (suy ra ở (2))
A B C D E F M K
a.Xét \(\Delta ABC\)và \(\Delta DEF\)có:
AB=DE và AC=DF(gt)
\(\widehat{BAC}=\widehat{DEF}\)(gt) chỗ này đề bn sai
=> \(\Delta ABC=\Delta DEF\left(cgc\right)\)
b. vì 2 tam giác = nhau
=> BC=EF(2 cạnh tương ứng)
Mà M và K lần lượt là trung điểm của BC và EF.
=> CM=FK
c.Vì 2 tam giác ABC và DEF bằng nhau nên:
\(\widehat{ACB}=\widehat{DFE}\)(2 góc tương ứng)
Xét \(\Delta ACM\)và \(\Delta DFK\)có:
AC=DF(gt)
\(\widehat{ACB}=\widehat{DFE}\)(ch/m trên)
CM=FK(ch/m trên)
=>\(\Delta ACM\)=\(\Delta DFK\)(cgc)
=> AM =DK(2 cạnh tương ứng)
B C A I M
a) Xét \(\Delta AIB\)và \(\Delta MIC\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIB}=\widehat{MIC}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIB=\Delta MIC\left(c.g.c\right)\)
b) Xét \(\Delta AIC\)và \(\Delta MIB\)có:
\(BI=CI\)(I là trung điểm của BC)
\(\widehat{AIC}=\widehat{MIB}\)(2 góc đối đỉnh)
\(AI=MI\left(gt\right)\)
Do đó: \(\Delta AIC=\Delta MIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{IAC}=\widehat{IMB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên AC // BM (đpcm)
a.góc B = 180-40-70=70
suy ra góc B=góc C
suy ra tam giác ABC cân tại A
nen AB=AC
ta có góc A<góc B nên BC<AC
vậy AB=AC>BC
b) tam giác ABC cân tại a (chứng minh trên)
suy ra AB=AC=7cm