Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,-\left|2x-3\right|\le0,\forall x\Leftrightarrow-\left|2x-3\right|+3\le3\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(b,-\left|2-3x\right|\le0,\forall x\Leftrightarrow-\left|2-3x\right|-5\le-5\)
Dấu \("="\Leftrightarrow x=\dfrac{2}{3}\)
a: \(A=-\left|2x-3\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
b: \(B=-\left|2-3x\right|-5\le-5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
a, 3.2x+1-2=94
B, (3x-1)3=125
C, 2x+2x+1+...........+2x+99=2100-1
. là dấu nhân
MIK CẦN GẤP
HELP!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\hept{\begin{cases}x-\left(y+z\right)=\frac{-1}{12}\\y-\left(x+z\right)=\frac{-1}{2}\\z-\left(x+y\right)=\frac{-7}{12}\end{cases}}\)
\(\Leftrightarrow-\left(x+y+z\right)=\frac{-7}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\left(x+y\right)=z-\frac{7}{6}\\-\left(x+z\right)=y-\frac{7}{6}\\-\left(y+z\right)=x-\frac{7}{6}\end{cases}}\)
Thay vô tinh tiếp, đc chứ??
Bạn ơi chứng minh nhỏ hơn hoặc bằng 0 nhé
\(=-y^{2018}-\left(x^2-x+1\right)\)
\(=-y^{2018}-\left(x+1\right)^2\)
Vì \(\hept{\begin{cases}-y^{2018}\le0;\forall x,y\\-\left(x+1\right)^2\le0;\forall x,y\end{cases}}\)
\(\Rightarrow-y^{2018}-\left(x+1\right)^2\le0;\forall x,y\left(đpcm\right)\)
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
\(a,\left(y^{54}\right)^2=y\)\(\Rightarrow y^{108}=y\)\(\Rightarrow y=\pm1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
\(c,x\left(6-x\right)^{2019}=\left(6-x\right)^{2019}\)
\(\Rightarrow\left(6-x\right)^{2019}\left(x-1\right)=0\)
\(\Rightarrow x\in\left\{1;6\right\}\)
\(\left(y^{54}\right)^2=y\)
\(\Rightarrow y^{108}=y\)
\(\Rightarrow y^{108}-y=0\)
\(\Rightarrow y\cdot\left(y^{107}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
X=2/9
\(\left|x\right|=-\dfrac{2}{9}\)(vô lý do \(\left|x\right|\ge0\forall x\))
Vậy \(S=\varnothing\)