Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
We have \(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
So...
Gọi vecto chỉ phương của tiếp tuyến là \(\overrightarrow{u}_{(a,b,c)}\). Ta có :
\(\overrightarrow {AC}=(-1,-1,0);\overrightarrow {n}_{P}=(2,1,1)\)
Theo điều kiện đề bài \(\overrightarrow{u}\perp \overrightarrow{AC},\overrightarrow{u}\perp \overrightarrow{n}_{P}\Rightarrow \overrightarrow{u}=[\overrightarrow{AC},\overrightarrow{n}_{P}]=(-1,1,1)\)
Do đó phương tiếp tuyến có dạng \(\frac{x-2}{-1}=y-2=z\), tức đáp án $B$ là đáp án đúng
Vì phân số có tử bằng 0 là 1 phân số đặc biệt nên dòng 2 bạn sai oy
2 ko thể = -2 dưới hình thức này