Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A=7+7^2+7^3+...+7^{78}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{77}+7^{78}\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{77}\left(1+7\right)\)
\(=7\cdot8+7^3\cdot8+...+7^{77}\cdot8\)
\(=\left(7+7^3+...+7^{77}\right)\cdot8\) chia hết cho 8
Vậy A chia hết cho 8 (đpcm)
\(A=3+3^2+3^3+...+3^{155}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{151}+3^{152}+3^{153}+3^{154}+3^{155}\right)\)
\(=3\left(1+3+3^2+3^3+3^4\right)+...+3^{151}\left(1+3+3^2+3^3+3^4\right)\)
\(=\left(3+...+3^{151}\right)\cdot121\) chia hết cho 121
Vậy A chia hết cho 121 (đpcm)
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử
\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp
\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)
\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)
a, Tính 2S rồi S=2S-S= 261-2
b, nhóm 2 số rồi t/c phân phối được chia hết cho 3
nhóm 3 số rồi t/c phân phối được chia hết cho 7
nhóm 4 số rồi t/c phân phối được chia hết cho 15
nhóm 5 số rồi t/c phân phối được chia hết cho 31
nhóm 6 số rồi t/c phân phối được chia hết cho 63
nhóm 7 số rồi t/c phân phối được chia hết cho 127
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)
A=14+2^3.14+...+2^57.14
A=14.(1+2^3+...+2^57)\(⋮\)14
=> ĐPCM
chia hết cho 2 và7 nhóm lại sẽ chia hết cho 7