Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A+B+C = ( 3x - 2y2 -2y) + ( 2z - x2 -4y ) + ( 4y - 5z2 - 3x )
= -2y2 - x2 - 5z2 ( đoạn này mk làm tắt nhá )
= - 2y2 + ( -x2) + ( -5z2 )
= -( 2y2 + x2 + 5z2 ) < 0
vì x, y , z \(\ne\)0 nên \(\hept{\begin{cases}2y^2>0\\x^2>0\\5z^2>0\end{cases}}\)
=> 2y2 + x2 + 5z2 >0
=> - ( 2y2 + x2 + 5z2 ) <0
nên A+B+C <0
Tổng 3 đa thức trên <0 . Vậy trong 3 đa thức trên phải có ít nhất 1 đa thức có g.trị âm
Ta có:2x+y=z−38⇒2x+y−z=−382x+y=z−38⇒2x+y−z=−38
Vì 3x=4y=5x−3x−4y3x=4y=5x−3x−4y nên 3x=5z−3x−3x3x=5z−3x−3x
⇒3x−5z−6x⇒3x−5z−6x
⇒9x=5z⇒9x=5z
⇒x5=z9⇒x20=z36⇒x5=z9⇒x20=z36(1)
Vì 3x=4y⇒x4=y3⇒x20=z153x=4y⇒x4=y3⇒x20=z15 (2)
Từ (1) và (2)⇒x20=y15=z36⇒x20=y15=z36
Áp dụng tính chất dãy tỉ số bằng nhau:
x20=y15=z36=2x+y−z2.20+15−36=−3819=−2x20=y15=z36=2x+y−z2.20+15−36=−3819=−2
x20=−2⇒x=20.(−2)=−40x20=−2⇒x=20.(−2)=−40
y15=−2⇒y=15.(−2)=−30y15=−2⇒y=15.(−2)=−30
z36=−2⇒z=36.(−2)=−72z36=−2⇒z=36.(−2)=−72
Vậy x=−40;y=−30;z=−72
Bài 1:
a) \(\frac{x-1}{0-2}=\frac{1,2}{1,5}\)
\(\Leftrightarrow\frac{1-x}{2}=\frac{4}{5}\)
\(\Leftrightarrow5-5x=8\)
\(\Leftrightarrow x=-\frac{3}{5}\)
b) Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4-6+6}=\frac{16}{4}=4\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
Bài 1:
c) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Leftrightarrow\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)
d) \(x:y:z=3:5:2\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{5x-7y+5z}{15-35+10}=\frac{124}{-10}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{186}{5}\\y=-62\\z=-\frac{124}{5}\end{cases}}\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
Áp dụng tính chất của dãy tỷ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{2}=2\Rightarrow y=4\)
\(\frac{z}{3}=2\Rightarrow z=6\)
Vậy x = 10 , y = 4 , z = 6
a) \(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=3k\end{cases}}\)
\(\Rightarrow2.5k-3.2k+5.3k=38\)
\(\Rightarrow10k-6k+15k=38\)
\(\Rightarrow19k=38\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=10\\y=4\\z=6\end{cases}}\)
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\); 4\(y\) = 5\(z\) và \(y\) + 2\(z\) = 72
y + 2z = 72 ⇒ y = 72 - 2z
Thay y = 72 - 2z vào biểu thức 4y = 5z ta có:
4(72 - 2z) = 5z
288 - 8z = 5z
8z + 5 z = 288
13z = 288
z = 288 : 13
z = \(\dfrac{288}{13}\)
y = 72 - 2 \(\times\) \(\dfrac{288}{13}\)
y = \(\dfrac{360}{13}\)
\(\dfrac{x}{3}\) = \(\dfrac{y}{2}\) ⇒ \(x\) = \(\dfrac{y}{2}\) \(\times\) \(3\) ⇒ \(x\) = \(\dfrac{360}{13}\) \(\times\) \(\dfrac{3}{2}\) = \(\dfrac{540}{13}\)
vậy ( \(x\); y; z) = ( \(\dfrac{540}{13}\); \(\dfrac{360}{13}\); \(\dfrac{288}{13}\))