K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}=\frac{\left(2x+7\right)+\left(3-5y\right)-\left(2x-5y\right)}{4+7-9}\)

\(=\frac{2x+7+3-5y-2x+5y}{2}=\frac{10}{2}=5\)

Suy ra:\(\frac{2x+7}{4}=5\Rightarrow2x+7=20\Rightarrow x=\frac{13}{2}\)

\(\frac{3-5y}{7}=5\Rightarrow3-5y=35\Rightarrow x=-\frac{32}{5}\)

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1. Chứng minh rằng: \(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\) ≥ \(3\sqrt{3}\) Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR: 1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\) ≥ \(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\) 2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+...
Đọc tiếp

Bài 1: Cho x,y, z > 0 thỏa mãn xyz = 1.

Chứng minh rằng:

\(\dfrac{\sqrt{1+x^3+y}^3}{xy}\)+ \(\dfrac{\sqrt{1+x^3+z^3}}{xz}\)+ \(\dfrac{\sqrt{1+y^3+z^3}}{yz}\)\(3\sqrt{3}\)

Bài 2: Choa, b, c,d > 0 thỏa mãn abcd = 1. CMR:

1) \(\dfrac{a^3}{c^6}\)+ \(\dfrac{c^3}{a^6}\)+ \(\dfrac{b^3}{d^6}\)+ \(\dfrac{d^3}{b^6}\)\(\dfrac{a^2}{c}\)+ \(\dfrac{c^2}{a}+\dfrac{b^2}{d}+\dfrac{d^2}{b}\)

2) \(\dfrac{a^5b^4}{c^{13}}\) + \(\dfrac{b^5c^4}{d^{13}}\) + \(\dfrac{c^5d^4}{a^{13}}\)+ \(\dfrac{d^5a^4}{b^{13}}\)\(\dfrac{ab^2}{c^3}+\dfrac{bc^2}{d^3}+\dfrac{cd^2}{a^3}\)+ \(\dfrac{da^2}{b^3}\)

Bài 3: Cho a, b,c ,d > 0. CMR:

\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{d^5}+\dfrac{d^2}{a^5}\)\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\)

Bài 4: tìm giá trị nhỏ nhất của biểu thức:

A= x + y biết x, y > 0 thỏa mãn \(\dfrac{2}{x}+\dfrac{3}{y}\) = 1

B= \(\dfrac{ab}{a^2+b^2}\) + \(\dfrac{a^2+b^2}{ab}\) với a, b > 0

Bài 5: Với x > 0, chứng minh rằng:

( x+2 )2 + \(\dfrac{2}{x+2}\) ≥ 3

Giúp mk với, mai mk phải kiểm tra rồi!!

4
AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 1:

Áp dụng BĐT Cauchy:

\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)

\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Hoàn toàn tương tự:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)

Cộng theo vế các BĐT thu được:

\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)

Ta có đpcm

Dấu bằng xảy ra khi $x=y=z=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Câu 4:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)

\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)

Vậy \(A_{\min}=5+2\sqrt{6}\)

Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)

------------------------------

Áp dụng BĐT Cauchy:

\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)

\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)

Cộng theo vế hai BĐT trên:

\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$

12 tháng 8 2019

1.

a) 13\(\frac{1}{3}\) : 1\(\frac{1}{3}\) = 26 : (2x - 1)

<=> \(\frac{40}{3}:\frac{4}{3}\) = 13x - 26

<=> 10 + 26 = 13x

<=> 13x = 36

<=> x = \(\frac{36}{13}\)

b) 0,2 : 1\(\frac{1}{5}\) = \(\frac{2}{3}\) : (6x + 7)

<=> \(\frac{1}{5}:\frac{6}{5}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{6}\) = \(\frac{1}{9}x\) : \(\frac{2}{21}\)

<=> \(\frac{1}{9}x\) = \(\frac{2}{21}.\frac{1}{6}\) = \(\frac{1}{63}\)

<=> x = \(\frac{1}{7}\)

c) \(\frac{37-x}{x+13}\) = \(\frac{3}{7}\)

<=> (37 - x) . 7 = 3.(x + 13)

<=> 119 - 7x = 3x + 39

<=> -7x - 3x = 39 - 119

<=> -10x = -80

<=> x = 8

d) \(\frac{x-1}{x+5}=\frac{6}{7}\)

<=> 7(x - 1) = 6(x + 5)

<=> 7x - 7 = 6x + 30

<=> 7x - 6x = 30 + 7

<=> x = 37

e)

2\(\frac{2}{\frac{3}{0,002}}\) = \(\frac{1\frac{1}{9}}{x}\)

<=> \(\frac{1501}{750}\) = \(\frac{10}{9}:x\)

<=> x = \(\frac{10}{9}:\frac{1501}{750}\) = \(\frac{2500}{4503}\)

12 tháng 8 2019

Bài 2. đề sai

Bài 3.

a) 6,88 : x = \(\frac{12}{27}\)

<=> x = 6,88 : \(\frac{12}{27}\)

<=> x = 15,48

b) 8\(\frac{1}{3}\) : \(11\frac{2}{3}\) = 13 : 2x

<=> \(\frac{25}{3}:\frac{35}{3}\) = 13 : 2x

<=> \(\frac{5}{7}=13:2x\)

<=> 2x = \(13:\frac{5}{7}\) = \(\frac{91}{5}\)

<=> x = 9,1

21 tháng 11 2017

2)

a) Ta có: \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}2n-1=1\Rightarrow n=1\\2n-1=3\Rightarrow n=2\end{matrix}\right.\)

Vậy n=1 hoặc n=2

b) Ta có: \(3n+2⋮n-1\)

\(\Rightarrow\left(3n-3\right)+5⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=5\Rightarrow n=6\end{matrix}\right.\)

Vậy n=2 hoặc n=6

21 tháng 11 2017

1. vì (2x-1)(y-1)=29 mà \(x,y\in N\)\(\Rightarrow\left\{{}\begin{matrix}2x-1>0\\y-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>1\end{matrix}\right.\)

ta có:\(\left(2x-1\right)\left(y-1\right)=29\Rightarrow2x-1=\dfrac{29}{y-1}\)

vì: \(x\in N\Rightarrow\dfrac{29}{y-1}\in N\)

\(\Rightarrow29⋮y-1\Rightarrow y\in\left\{2;30\right\}\)

với y=2 => x=15

với y=30 => x=1

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

AH
Akai Haruma
Giáo viên
20 tháng 4 2020

Bài 4:

$\sin a=\frac{1}{2}$ và $0< a< \pi$ nên $a=\frac{\pi}{6}$ hoặc $a=\frac{5}{6}\pi$

Nếu $a=\frac{\pi}{6}$ thì $\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{-\sqrt{3}}{3}+\frac{1}{2}=\frac{3-2\sqrt{3}}{6}$

Nếu $a=\frac{5\pi}{6}$ thì:

\(\tan (2a-\frac{\pi}{2})+\sin a=\tan (2.\frac{5\pi}{6}-\frac{\pi}{2})+\frac{1}{2}=\frac{\sqrt{3}}{3}+\frac{1}{2}=\frac{3+2\sqrt{3}}{6}\)

AH
Akai Haruma
Giáo viên
20 tháng 4 2020

Bài 3:

\(\tan a=\frac{-4}{7}=\frac{\sin a}{\cos a}\)

\(\Rightarrow \frac{\sin ^2a}{\cos ^2a}=\frac{16}{49}\Rightarrow \frac{1}{\cos ^2a}=\frac{65}{49}\) \(\Rightarrow \cos ^2a=\frac{49}{65}\)

Kết hợp điều kiện của $a$ suy ra $\cos a>0\Rightarrow \cos a=\frac{7}{\sqrt{65}}$

$\Rightarrow \sin a=\frac{-4}{7}\cos a=\frac{-4}{\sqrt{65}}$

Do đó:

\(\cos (2a-\frac{\pi}{2})=\cos 2a.\cos \frac{\pi}{2}+\sin 2a.\sin \frac{\pi}{2}\)

\(=(\cos ^2a-\sin ^2a).0+2\sin a\cos a.1=2\sin a\cos a=2.\frac{-4}{\sqrt{65}}.\frac{7}{\sqrt{65}}=\frac{56}{65}\)