Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) \(5n-8⋮4-n\)
\(\Rightarrow-20+5n+12⋮4-n\)
\(\Rightarrow-5\left(4-n\right)+12⋮4-n\)
\(\Rightarrow12⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
+) \(4-n=-1\Rightarrow n=5\)
+) \(4-n=1\Rightarrow n=3\)
+) \(4-n=-2\Rightarrow n=6\)
+) \(4-n=2\Rightarrow n=2\)
+) \(4-n=-3\Rightarrow n=7\)
+) \(4-n=3\Rightarrow n=1\)
+) \(4-n=-4\Rightarrow n=8\)
+) \(4-n=4\Rightarrow n=0\)
+) \(4-n=-6\Rightarrow n=10\)
+) \(4-n=6\Rightarrow n=-2\)
+) \(4-n=-12\Rightarrow n=16\)
+) \(4-n=12\Rightarrow n=-8\)
Vậy \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;16;-8\right\}\)
b) Ta có:\(n^2+3n+6⋮n+3\)
\(\Rightarrow n\left(n+3\right)+6⋮n+3\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
+) \(n+3=-1\Rightarrow n=-4\)
+) \(n+3=1\Rightarrow n=-2\)
+) \(n+3=-2\Rightarrow n=-5\)
+) \(n+3=2\Rightarrow n=-1\)
+) \(n+3=-3\Rightarrow n=-6\)
+) \(n+3=3\Rightarrow n=0\)
+) \(n+3=-6\Rightarrow n=-9\)
+) \(n+3=6\Rightarrow n=3\)
Vậy \(n\in\left\{-4;-2;-5;-1;-6;0;-9;3\right\}\)
5.
(x^2 -1)(x^2 +9) <0
(x+3)(x+1)(x-1)(x-3)<0
x \(\in\)(-3;-1)U(1;3)
Bài 2:
a: \(A=-\left|x+5\right|+2017\le2017\)
Dấu '=' xảy ra khi x=-5
b: \(B=\left|y-3\right|+50\ge50\)
Dấu '=' xảy ra khi y=3
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
\((a^2+2c^2)(1+2)\geq (a+2c)^2\)
\(\Rightarrow \sqrt{a^2+2c^2}\geq \frac{a+2c}{\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{a^2+2c^2}}{ac}\geq \frac{a+2c}{\sqrt{3}ac}=\frac{ab+2bc}{\sqrt{3}abc}\)
Hoàn toàn tương tự: \(\left\{\begin{matrix} \frac{\sqrt{c^2+2b^2}}{bc}\geq \frac{ac+2ab}{\sqrt{3}abc}\\ \frac{\sqrt{b^2+2a^2}}{ab}\geq \frac{bc+2ac}{\sqrt{3}abc}\end{matrix}\right.\)
Cộng theo vế các BĐT trên thu được:
\(\text{VT}\geq \frac{1}{\sqrt{3}}.\frac{ab+2bc+ac+2ab+bc+2ac}{abc}=\frac{1}{\sqrt{3}}.\frac{3(ab+bc+ac)}{abc}=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=\sqrt{3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=3$
Bài 2: Bài này sử dụng pp xác định điểm rơi thôi.
Áp dụng BĐT AM-GM ta có:
\(24a^2+24.(\frac{31}{261})^2\geq 2\sqrt{24^2.(\frac{31}{261})^2a^2}=\frac{496}{87}a\)
\(b^2+(\frac{248}{87})^2\geq 2\sqrt{(\frac{248}{87})^2.b^2}=\frac{496}{87}b\)
\(93c^2+93.(\frac{8}{261})^2\geq 2\sqrt{93^2.(\frac{8}{261})^2c^2}=\frac{496}{87}c\)
Cộng theo vế:
\(B+\frac{248}{29}\geq \frac{496}{87}(a+b+c)=\frac{496}{87}.3=\frac{496}{29}\)
\(\Rightarrow B\geq \frac{496}{29}-\frac{248}{29}=\frac{248}{29}\)
Vậy \(B_{\min}=\frac{248}{29}\). Dấu bằng xảy ra khi: \((a,b,c)=(\frac{31}{261}; \frac{248}{87}; \frac{8}{261})\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
2)
a) Ta có: \(4n-5⋮2n-1\)
\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Rightarrow-3⋮2n-1\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}2n-1=1\Rightarrow n=1\\2n-1=3\Rightarrow n=2\end{matrix}\right.\)
Vậy n=1 hoặc n=2
b) Ta có: \(3n+2⋮n-1\)
\(\Rightarrow\left(3n-3\right)+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=5\Rightarrow n=6\end{matrix}\right.\)
Vậy n=2 hoặc n=6
1. vì (2x-1)(y-1)=29 mà \(x,y\in N\)\(\Rightarrow\left\{{}\begin{matrix}2x-1>0\\y-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>1\end{matrix}\right.\)
ta có:\(\left(2x-1\right)\left(y-1\right)=29\Rightarrow2x-1=\dfrac{29}{y-1}\)
vì: \(x\in N\Rightarrow\dfrac{29}{y-1}\in N\)
\(\Rightarrow29⋮y-1\Rightarrow y\in\left\{2;30\right\}\)
với y=2 => x=15
với y=30 => x=1