Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x chia 6 dư 4, chia 9 dư 7 nen ta có
x+2 chia hết cho 6 và 9
Suy ra x+2 thuộc BC(6,9)
Ta có 6=2.3 suy ra BCNN(6,9)=2.3^2=18
9=3^2
Vậy x+2 thuộc BC(6,9)={0;18;36;....}
x thuộc {16;34;....}
Mà 30<x<100 nên x thuộc {36;70;88}
a) (x-3)(y+5)=17
Ta có bảng:
x-3 | 1 | 17 | -1 | -17 |
y+5 | 17 | 1 | -17 | -1 |
x | 4 | 20 | 2 | -14 |
y | 12 | -4 | -22 | -6 |
Vậy............
Lập bảng tương tự các câu còn lại
Câu a mik bt r nha bn, bn giải các câu còn lại nha, nhưng phải giải chi tiết, giải như vậy, mik ko hiểu
\(\left|x\right|=\frac{1}{5}-\frac{1}{4}=-\frac{1}{20}\)(vô lý)
Vậy không có x thỏa mãn đề
\(\left|x\right|=\frac{1}{5}-\frac{1}{4}\)
\(\left|x\right|=-\frac{1}{20}\)
\(\Rightarrow x\in\varnothing\)
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )
Bài làm
a) x( x - 1) = 0
=> x = 0 hoặc x - 1 = 0
=> x = 0 hoặc x = 1
Vậy .....
b) ( x + 1 )( x - 2 ) = 0
=> x + 1 = 0 hoặc x - 2 = 0
=> x = -1 hoặc x = 2
Vậy ...
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
a) *Trường hợp 1: a < 0
=> Vô lý vì |x| ≥ 0
=> Ko có giá trị x cần tìm
*Trường hợp 2: a ≥ 0
\(\left|x\right|=a\Rightarrow\left[{}\begin{matrix}x=-a\\x=a\end{matrix}\right.\)
b)
*Trường hợp 1: a < 0
=> Vô lý vì |x + a| ≥ 0
=> Ko có giá trị x cần tìm
*Trường hợp 2: a ≥ 0
\(\)\(\left|x+a\right|=a\)
\(\Rightarrow\left[{}\begin{matrix}x+a=a\\x+a=-a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2a\end{matrix}\right.\)
a) - Do \(a = |x|\) nên \(a \geq 0\)
+ Xét \(a=0\)
\( \to x=0\)
+ Xét \(a>0\)
\( \to x = \pm a\)
- Vậy \(x \in \{0;\pm a\}\)
b) - Do \(a=|x+a|\) nên \(a \geq 0\)
- Xét \(a=0\)
\( \to x+0=0\)
\( \to x=0 \)
- Xét \(a>0\)
\( \to x+a=\pm a\)
\( \to x \in \{0;-2a\}\)
- Vậy \(x \in \{0;-2a\}\)
Help me . Mai mik phải nạp rồi.
Ai làm đúng mik sẽ