K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

#)Giải :

1)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)

Vậy x = 2; y = 1; z = 3

2)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)

Vậy x = 6; y = 36; z = 18

3)Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)

Vậy x = 2,5; y = 1,5; z = 1

6 tháng 10 2016

Đặt \(\frac{x}{4}=\frac{y}{9}=k\Rightarrow x=4k;y=9k\)

\(\Rightarrow xy=144\Leftrightarrow4k\cdot9k=144\)

\(\Rightarrow36k^2=144\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

Nếu \(k=2\Rightarrow\hept{\begin{cases}x=4k=4\cdot2=8\\y=9k=9\cdot2=18\end{cases}}\)

Nếu \(k=-2\Rightarrow\hept{\begin{cases}x=4k=4\cdot\left(-2\right)=-8\\y=9k=9\cdot\left(-2\right)=-18\end{cases}}\)

20 tháng 10 2018

1) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}.\)

ADTCDTSBN

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}=\frac{x^3+y^3-z^3}{8+27-64}=\frac{-29}{-29}=1\)

=>....

  \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)Và x3+y3-z3=-29

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x^3}{8}=\frac{y^3}{17}=\frac{z^3}{65}=\frac{x^3+y^3-z^3}{8+17-64}=\frac{14}{39}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{14}{39}\Rightarrow x=\frac{28}{39}\\\frac{y}{3}=\frac{14}{39}\Rightarrow y=\frac{14}{13}\\\frac{x}{4}=\frac{14}{39}\Rightarrow z=\frac{56}{39}\end{cases}}\)

Vậy x =\(\frac{28}{39}\)

       y = \(\frac{14}{13}\)

       z = \(\frac{56}{39}\)

23 tháng 7 2019

a, 5x = 2y

 \(\Rightarrow\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}\Rightarrow}\hept{\begin{cases}x^3=\left(2k\right)^3\\y^2=\left(5k\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}x^3=8k^3\\y^2=25k^2\end{cases}}\)

=> 8k3 . 25k2 = 200

=>200k5 = 200

=> k5 = 1

=> k = 1

\(\Rightarrow\hept{\begin{cases}x=2k=2.1=2\\y=5k=5.1=5\end{cases}}\)

b, Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\left(3k\right)^2\\y^2=\left(4k\right)^2\end{cases}\Rightarrow\hept{\begin{cases}x^2=9k^2\\y^2=16k^2\end{cases}}}\)

=> 9k2 + 16k2 = 100

=> 25k2 = 100

=> k2 = 4

=> k = ±2

=> +) x = 3k = 3 . 2 = 6

     +) x = 3k = 3 . (-2) = -6

=> +) y = 4k = 4 . 2 = 8

     +) y = 4k = 4 . (-2) = -8

c, Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)

=> 5k . 2k . (-3)k = 240

=> -30k3 = 240

=> k3 = -8

=> k = -2

\(\Rightarrow\hept{\begin{cases}x=5k=5.\left(-2\right)=-10\\y=2k=2.\left(-2\right)=-4\\z=-3k=-3.\left(-2\right)=6\end{cases}}\)

DD
21 tháng 7 2021

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{2\left(x+16\right)+3\left(y-25\right)-\left(z+9\right)}{2.9+3.16-25}\)

\(=\frac{2x+3y-z-52}{41}=\frac{50-52}{41}=\frac{-2}{41}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{41}.9-16=\frac{-674}{41}\\y=\frac{-2}{41}.16+25=\frac{993}{41}\\z=-\frac{2}{41}.25-9=\frac{-419}{41}\end{cases}}\)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

24 tháng 8 2018

Câu 1 :

( x - 5 )^x = 64 thì có nhiều trường hợp lắm bạn

VD : ( x - 5 )^x = 2^6 = 4^3 = ...

Bạn tự làm nhé

Câu 2 :

\(\left(\frac{3}{2}\right)^x=\frac{81}{16}=\left(\frac{3}{2}\right)^4\)

=> x = 4

24 tháng 9 2019

\(a,\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = 124

Ta có : \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\)=> \(\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

Đến đây là tìm x,y,z rồi

b. Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ \((1)\)suy ra x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ \((2)\)ta suy ra : \(\frac{1}{2}=x+y+z\), khi đó \((1)\)trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : 2x = \(\frac{3}{2}-x\)=> \(x=\frac{1}{2}\); 2y = \(\frac{3}{2}-y\)=> \(y=\frac{1}{2}\); 2z = \(-\frac{3}{2}-z\)=> \(z=-\frac{1}{2}\)

Vậy có hai đáp số \((0,0,0)\)và \((\frac{1}{2};\frac{1}{2};-\frac{1}{2})\)

9 tháng 1 2020

I don,t know