Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a) Ta có:
\(x+y+z=49\Rightarrow12x+12y+12z=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
Tìm x,y,z:
a) Ta có : \(\frac{x}{y}=\frac{5}{7}=\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy các tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5^{ }}\right)^2\)\(=\left(\frac{y}{7}\right)^2\)=\(\frac{x.y}{5.7}\)= \(\frac{35}{35}\)=1
Do đó:
\(\left(\frac{x}{5}\right)^2\)=1 => \(\frac{x}{5}\)=1 hoặc -1 => x = 5 hoặc -5
\(\left(\frac{y}{7^{ }}\right)^2\)=1=> \(\frac{y}{7}\)=1 hoặc -1 => 7 hoặc -7
Vì 35 > 0 với mọi x , y
=> x, y cùng dấu
Vậy ( x,y) thuộc ( 5;7) và (-5; -7)
/Còn lại tự làm tự xem trình độ/
Vìx/7 =9/y suy ra:
x * y = 9 * 7
x * y = 63
Ta có: 63 = 63 * 1 = 23 * 3 = 9 * 7
Mà x > y nên: x = 63 thì y = 1
x = 23 thì y = 3
Đầu tiên đặt điều kiện cho phân số có nghĩa :y-3 # 0 <=> y#3
x-4\y-3=4\3
<=> 3(x-4) = 4(y-3)
<=> 3x - 12 = 4y - 12
<=> 3x-4y = 0 (*)
từ pt : x-y=5 => x = 5 + y (**) thế vào (*) ta được
3(5+y) - 4y = 0
<=>15 + 3y - 4y = 0
<=> y = 15
thế ngược lại (**) ta được x = 20
(thỏa mãn điều kiện -> nhận)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
A nhé
Thanks