Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}=\frac{35}{35}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{5}\right)^2=1\Rightarrow\frac{x^2}{25}=1\Rightarrow x^2=1.25=25=5^2\\\left(\frac{y}{7}\right)^2=1\Rightarrow\frac{y^2}{49}=1\Rightarrow y^2=1.49=49=7^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}5;-5\\y\in\text{{}7;-7\end{cases}}\)
Vậy ...
d) (Đừng chép vội, đọc dòng cuối đi)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}.\frac{1}{2}=\frac{y}{2}.\frac{1}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(y=4z\Rightarrow\frac{y}{4}=\frac{z}{1}\)Ngoặc "}'' 2 điều lại
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{1}=\frac{x-y+z}{6-4+1}=\frac{2}{3}\)
Không biết phần d bạn có chép sai đề không ? Chứ tính đáp án nó không phù hợp
a) \(\frac{x}{y}=\frac{5}{7}\)=>\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}\)
=>\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{35}{35}=1\)
=> \(x^2=25;y^2=49\)
=>\(x=\pm5;y=\pm7\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Tìm x,y,z:
a) Ta có : \(\frac{x}{y}=\frac{5}{7}=\frac{x}{5}=\frac{y}{7}\)
Áp dụng tính chất dãy các tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5^{ }}\right)^2\)\(=\left(\frac{y}{7}\right)^2\)=\(\frac{x.y}{5.7}\)= \(\frac{35}{35}\)=1
Do đó:
\(\left(\frac{x}{5}\right)^2\)=1 => \(\frac{x}{5}\)=1 hoặc -1 => x = 5 hoặc -5
\(\left(\frac{y}{7^{ }}\right)^2\)=1=> \(\frac{y}{7}\)=1 hoặc -1 => 7 hoặc -7
Vì 35 > 0 với mọi x , y
=> x, y cùng dấu
Vậy ( x,y) thuộc ( 5;7) và (-5; -7)
/Còn lại tự làm tự xem trình độ/