Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\left(x+y+3\right)^2=1-y^2\)
Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)
B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)
B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)
(x+y+3)^2 +y^2-17=0
(x+y+3)^2=17-y^2
\(\orbr{\begin{cases}x+y+3=\sqrt{17-y^2}\\x+y+3=-\sqrt{17-y^2}\end{cases}}\\ \)
\(0\le\sqrt{17-y^2}< =17\Rightarrow-17\le-\sqrt{17-y^2}\le0\Rightarrow x+y+3\ge-17\)
ddawngr thuwcs khi y=0
=> B=(x+y+3)+2013\(\ge2013-17=1996\)
Giải:
Đặt \(A=x+y+2017\) Ta có: \(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Mà \(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\) \(\Leftrightarrow\left(x+y+3\right)^2\le1\)
\(\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow2013\le A\le2015\) Dấu "=" xảy ra:
\(A_{MIN}\Leftrightarrow\hept{\begin{cases}x+y+2017=2013\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)
\(A_{MAX}\Leftrightarrow\hept{\begin{cases}x+y+2017=2015\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)