Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{x^3-y^3}{x^2y-xy^2}-\dfrac{x^3+y^3}{x^2y+xy^2}-\left(\dfrac{x}{y}-\dfrac{y}{x}\right)\left(\dfrac{x+y}{x-y}-\dfrac{x-y}{x+y}\right)\)
\(=\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x-y\right)}-\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x+y\right)}-\dfrac{x^2-y^2}{xy}\cdot\dfrac{x^2+2xy+y^2-x^2+2xy-y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+xy+y^2-x^2+xy-y^2}{xy}-\dfrac{\left(x-y\right)\left(x+y\right)}{xy}\cdot\dfrac{4xy}{\left(x-y\right)\left(x+y\right)}\)
\(=2-4=-2\)
4.
\(ab+bc+ca=3abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(S=\sum\dfrac{\dfrac{1}{y^2}}{\dfrac{1}{x}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)}=\sum\dfrac{x^3}{x^2+y^2}=\sum\left(x-\dfrac{xy^2}{x^2+y^2}\right)\)
\(S\ge\sum\left(x-\dfrac{xy^2}{2xy}\right)=\sum\left(x-\dfrac{y}{2}\right)=\dfrac{x+y+z}{2}=\dfrac{3}{2}\)
\(S_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
5.
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
Đặt vế trái là P
\(P=\dfrac{z^3}{x^2+z^2}+\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}\)
Quay lại dòng 3 của bài số 4
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
g: \(a^3-a^2+9a-9\)
\(=a^2\left(a-1\right)+9\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+9\right)\)
ta có: \(\frac{a}{25}+\frac{a}{20}=1,8\)
\(\Rightarrow a\left(\frac{1}{25}+\frac{1}{20}\right)=\frac{9}{5}\)
\(\Rightarrow\frac{9a}{100}=\frac{9}{5}\)
\(\Rightarrow a=20\)
TK NHA !
\(\frac{a}{25}+\frac{a}{20}=\frac{9}{5}\)
\(\Rightarrow\frac{4a+5a}{100}=\frac{9}{5}\)
\(\Rightarrow\frac{9a}{100}=\frac{9}{5}\)
\(\Rightarrow9a\times5=9\times100\)
\(\Rightarrow a=900:45=20\)
\(\Rightarrow P=\left(\dfrac{\left(y-x\right)\left(y+x\right)}{y-x}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x+y\right)}\right).\dfrac{x+y}{y^2-2xy+x^2+xy}\)
\(\Rightarrow P=\left(y+x-\dfrac{x^2+xy+y^2}{x+y}\right).\dfrac{x+y}{y^2-xy+x^2}\)
\(\Rightarrow P=\dfrac{\left(x+y\right)^2-\left(x^2+xy+y^2\right)}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)
\(\Rightarrow P=\dfrac{x^2+2xy+y^2-x^2-xy-y^2}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)
\(\Rightarrow P=\dfrac{xy}{x+y}.\dfrac{x+y}{y^2-xy+x^2}\)
\(\Rightarrow P=\dfrac{xy}{y^2-xy+x^2}\)