Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_n-1=\frac{2^n-5^n}{2^n+5^n}-1=\frac{-2.5^n}{2^n+5^n}\Rightarrow\frac{1}{u_n-1}=\frac{2^n+5^n}{-2.5^n}=-\frac{1}{2}\left(\left(\frac{2}{5}\right)^n+1\right)\)
\(\Rightarrow S_{10}=-\frac{1}{2}\left[\frac{2}{5}+\left(\frac{2}{5}\right)^2+...+\left(\frac{2}{5}\right)^{10}+10\right]\)
\(=-\frac{1}{2}\left[\frac{2}{5}.\frac{1-\left(\frac{2}{5}\right)^{10}}{1-\frac{2}{5}}+10\right]=\frac{1}{3}\left(\frac{2}{5}\right)^{10}-\frac{16}{3}\)
Lời giải:
Trong các hàm kể trên có hàm số ở phương án A không xác định tại $x=-1$ nên hàm số đó gián đoạn tại điểm $x_0=-1$
Đáp án A.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x^2+2\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x^2+2\right)=3\)
\(f\left(1\right)=3.1+m=m+3\)
Hàm số liên tục tại \(x_0=1\) khi và chỉ khi \(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\)
\(\Rightarrow m+3=3\Rightarrow m=0\)
Bài 2:
a: \(=\dfrac{7}{9}\left(\dfrac{7}{6}-\dfrac{19}{20}-\dfrac{1}{15}\right)+\dfrac{22}{5}\cdot\dfrac{1}{24}\)
\(=\dfrac{7}{9}\cdot\dfrac{3}{20}+\dfrac{22}{120}=\dfrac{7}{60}+\dfrac{11}{60}=\dfrac{18}{60}=\dfrac{3}{10}\)
b: \(=\left(\dfrac{35-32}{60}\right)^2+\dfrac{4}{5}\cdot\dfrac{70-45}{80}\)
\(=\dfrac{1}{400}+\dfrac{4\cdot25}{400}=\dfrac{101}{400}\)
a. Δy = f(x0 + Δx) – f(x0) = f(1 + 1) – f(1) = f(2) – f(1) = 23 – 13 = 7
b. Δy = f(x0 + Δx) – f(x0) = f(1 – 0,1) – f(1) = f(0,9) – f(1) = (0,9)3 – 13 = -0,271.
6 là kết quả của mk nha bn
Syntax ERROR
Ở đầu quên viết dấu "(" kìa
Nếu có dấu ")" ở đầu thì kết quả bằng 0