K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức

b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức

23 tháng 7 2023

Các biểu thức không phải đa thức là:

\(\sqrt{2}x^2y,0\)

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)       

\(\begin{array}{l}N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\\ = \left( {5{y^2}{z^2} - 2{y^2}{z^2}} \right) + \left( { - 2x{y^2}z + x{y^2}z} \right) + \left( {\dfrac{1}{3}{x^4} + \dfrac{2}{3}{x^4}} \right)\\ = 3{y^2}{z^2} - x{y^2}z + {x^4}\end{array}\)

b)      Đa thức có 3 hạng tử là: \(3{y^2}{z^2}; - x{y^2}z;{x^4}\)

Xét hạng tử \(3{y^2}{z^2}\) có hệ số là 3, bậc là 2+2=4.

Xét hạng tử \( - x{y^2}z\) có hệ số là -1, bậc là 1+2+1=4.

Xét hạng tử \({x^4}\) có hệ số là 1, bậc là 4.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1\) có bậc là 2.

b)       

\(\begin{array}{l}H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7\\ = \left( {4{x^5} - 4{x^5}} \right) - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\\ =  - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} + 2{y^2} - 7\end{array}\)

Đa thức H có bậc là 4.

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

a)      Các đơn thức là: \(\dfrac{4}{5}x;\left( {\sqrt 2  - 1} \right)xy; - 3x{y^2};\dfrac{1}{2}{x^2}y;\dfrac{{ - 3}}{2}{x^2}y.\)

b)      +Xét đơn thức \(\dfrac{4}{5}x\) có hệ số là \(\dfrac{4}{5}\), phần biến là \(x\).

+Xét đơn thức \(\left( {\sqrt 2  - 1} \right)xy\) có hệ số là \(\sqrt 2  - 1\), phần biến \(xy\).

+Xét đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\), phần biến là \(x{y^2}\).

+Xét đơn thức \(\dfrac{1}{2}{x^2}y\) có hệ số là \(\dfrac{1}{2}\), phần biến \({x^2}y\).

+Xét đơn thức \( - \dfrac{3}{2}{x^2}y\) có hệ số là \( - \dfrac{3}{2}\), phần biến \({x^2}y\).

c)      Tổng các đơn thức trên là đa thức:

\(\begin{array}{l}\dfrac{4}{5}x + \left( {\sqrt 2  - 1} \right)xy + \left( { - 3x{y^2}} \right) + \dfrac{1}{2}{x^2}y + \dfrac{{ - 3}}{2}{x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2  - 1} \right)xy - 3x{y^2} + \left( {\dfrac{1}{2} + \dfrac{{ - 3}}{2}} \right){x^2}y\\ = \dfrac{4}{5}x + \left( {\sqrt 2  - 1} \right)xy - 3x{y^2} - {x^2}y\end{array}\)

Bậc của đa thức trên là 1 + 2 = 3.

6 tháng 6 2015

1) x2-4x+5+y2+2y=0

<=>x2-4x+4+y2+2y+1=0

<=>(x-2)2+(x+1)2=0

<=>x-2=0 và x+1=0

<=>x=2    và x=-1

2)2p.p2-(p3-1)+(p+3)2p2-3p5 

<=>2p3-p3+1+2p3+6p2-3p5

<=>3p3+6p2-3p5+1

3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1

                                     =1

4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3

                                           =-18x2+3(đề sai)

 b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x

                                                    =16

Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x

5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0

b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0

6)M+(12x4-15x2y+2xy2+7)=0

<=>M                              =-(12x4-15x2y+2xy2+7)

<=>M                              =-12x4+15x2y-2xy2-7