Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức: \(y + 3{\rm{z}} + \dfrac{1}{2}{y^2}z\)là đa thức
Biểu thức: \(\dfrac{{{x^2} + {y^2}}}{{x + y}}\) không phải là đa thức
Những biểu thức là đơn thức là: \(5y;\dfrac{1}{2}{x^3}{y^2}{x^2}z\).
a)
\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ = - \dfrac{1}{2}\end{array}\)
Vậy \(A = - \dfrac{1}{2}\) không phụ thuộc vào biến x
b)
\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\end{array}\)
Vậy B = -10 không phụ thuộc vào biến x, y.
c)
\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)
Vậy C = 13 không phụ thuộc vào biến x
\(a)\dfrac{{3{\rm{x}} + 6}}{{4{\rm{x}} - 8}}.\dfrac{{2{\rm{x}} - 4}}{{x + 2}} = \dfrac{{3\left( {x + 2} \right).2\left( {x - 2} \right)}}{{4.\left( {x - 2} \right).\left( {x + 2} \right)}} = \dfrac{3}{2}\)
\(b)\dfrac{{{x^2} - 36}}{{2{\rm{x}} + 10}}.\dfrac{{x + 5}}{{6 - x}} = \dfrac{{\left( {x - 6} \right)\left( {x + 6} \right)\left( {x + 5} \right)}}{{2\left( {x + 5} \right).\left( { - 1} \right)\left( {x - 6} \right)}} = \dfrac{{x + 6}}{{ - 2}} = \dfrac{{-x- 6}}{{ 2}}\)
\(c)\dfrac{{1 - {y^3}}}{{y + 1}}.\dfrac{{5y + 5}}{{{y^2} + y + 1}} = \dfrac{{\left( {1 - y} \right)\left( {1 + y + {y^2}} \right).5\left( {y + 1} \right)}}{{\left( {y + 1} \right).\left( {{y^2} + y + 1} \right)}} = 5\left( {1 - y} \right)\)
\(d)\dfrac{{x + 2y}}{{4{{\rm{x}}^2} - 4{\rm{x}}y + {y^2}}}.\left( {2{\rm{x}} - y} \right) = \dfrac{{\left( {x + 2y} \right).\left( {2{\rm{x}} - y} \right)}}{{{{\left( {2{\rm{x}} - y} \right)}^2}}} = \dfrac{{x + 2y}}{{2{\rm{x}} - y}}\)
a) MTC chọn là: \(2{{\rm{x}}^2}{y^4}\)
Nhân tử phụ của \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\) lầm lượt là: y; 2x
Vậy: \(\begin{array}{l}\dfrac{5}{{2{{\rm{x}}^2}{y^3}}} = \dfrac{{5.y}}{{2{{\rm{x}}^2}{y^3}.y}} = \dfrac{{5y}}{{2{{\rm{x}}^2}{y^4}}}\\\dfrac{3}{{x{y^4}}} = \dfrac{{3.2{\rm{x}}}}{{x{y^4}.2{\rm{x}}}} = \dfrac{{6{\rm{x}}}}{{2{{\rm{x}}^2}{y^4}}}\end{array}\)
b) Ta có:
\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)
Chọn MTC là: \(2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)\)
Nhân tử phụ của các mẫu thức trên lần lượt là: \(\left( {x + 5} \right);2{\rm{x}}\)
Vậy:
\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}} = \dfrac{{3\left( {x + 5} \right)}}{{2{\rm{x}}.\left( {x - 5} \right)\left( {x + 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{2.2{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{4{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)
a)
\(\begin{array}{l}A = \left( {\dfrac{{x + 1}}{{2{\rm{x}} - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2{\rm{x}} + 2}}} \right).\dfrac{{4{{\rm{x}}^2} - 4}}{5}\\A = \left[ {\dfrac{{x + 1}}{{2\left( {x - 1} \right)}} + \dfrac{3}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{x + 3}}{{2\left( {x + 1} \right)}}} \right].\dfrac{{4\left( {{x^2} - 1} \right)}}{5}\end{array}\)
Điều kiện xác định của biểu thức A là: \(x + 1 \ne 0;x - 1 \ne 0\)
b)
\(\begin{array}{l}A = \left( {\dfrac{{x + 1}}{{2{\rm{x}} - 2}} + \dfrac{3}{{{x^2} - 1}} - \dfrac{{x + 3}}{{2{\rm{x}} + 2}}} \right).\dfrac{{4{{\rm{x}}^2} - 4}}{5}\\A = \left[ {\dfrac{{x + 1}}{{2\left( {x - 1} \right)}} + \dfrac{3}{{\left( {x - 1} \right)\left( {x + 1} \right)}} - \dfrac{{x + 3}}{{2\left( {x + 1} \right)}}} \right].\dfrac{{4\left( {{x^2} - 1} \right)}}{5}\\A = \dfrac{{\left( {x + 1} \right)\left( {x + 1} \right) - 3.2 - \left( {x + 3} \right)\left( {x - 1} \right)}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}.\dfrac{{4\left( {x - 1} \right)\left( {x + 1} \right)}}{5}\\A = \dfrac{{{x^2} + 2{\rm{x}} + 1 - 6 - {x^2} - 2{\rm{x + 3}}}}{{2\left( {x - 1} \right)\left( {x + 1} \right)}}.\dfrac{{4\left( {x - 1} \right)\left( {x + 1} \right)}}{5}\\A = \dfrac{{10.4}}{{2.5}} = 4\end{array}\)
Vậy giá trị của A = 4 không phụ thuộc vào các giá trị của biến
\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)
\(\Rightarrow P\ge x+2y+3z-3\)
\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)
\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
a) Những đơn thức \({x^2}{y^4}; - 3{{\rm{x}}^2}{y^4}\) và \(\sqrt 5 {x^2}{y^4}\) có hệ số khác 0 và có cùng phần biến nên chúng là những đơn thức đồng dạng.
b) Những đơn thức \( - {x^2}{y^2}{z^2}\) và \( - 2{{\rm{x}}^2}{y^2}{z^3}\)không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức